Skip to main content
Log in

Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part I: Yield Strength

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Low carbon Nb-Mo microalloyed steels show interesting synergies between the “micro”-alloying elements when high strength–high toughness properties are required. Strain accumulation in austenite is enhanced, and therefore grain sizes are refined in the final microstructures. The presence of Mo facilitates the presence of non-polygonal phases, and this constituent modification induces an increment in strength through a substructure formation as well as through an increase in the dislocation density. Regarding fine precipitation and its strengthening effect, the mean size of NbC is reduced in the presence of Mo and their fraction increased, thus enhancing their contribution to yield strength. In this paper, a detailed characterization of the microstructural features of a series of microalloyed steels is described using the electron-backscattered diffraction technique. Mean crystallographic unit sizes, a grain boundary misorientation analysis, and dislocation density measurements are performed. Transmission electron microscopy is carried out to analyze the chemical composition of the precipitates and to estimate their volume fraction. In this first part, the contribution of different strengthening mechanisms to yield strength is evaluated and the calculated value is compared to tensile test results for different coiling temperatures and compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.G. Jansto: New Developments on Metallurgy and Applications of High Strength Steels Conf., Buenos Aires, 2008, TMS, Warrendale, PA, pp. 1313–26.

  2. D. Bhattacharya: 6th Int. Conf. on High Strength Low Alloy Steels, HSLA 2011, Beijing, China, 2011, CD-Rom.

  3. M. Gómez, L. Rancel, and S.F. Medina: Met. Mater. Int.., 2009, vol. 15, pp. 689–99.

    Article  Google Scholar 

  4. R. Bengoechea, B. López, and I. Gutiérrez: ISIJ Int., 1999, vol. 39, pp. 583–91.

    Article  Google Scholar 

  5. N. Isasti, D. Jorge-Badiola, M.L. Taheri, B. López and P. Uranga: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3729–42.

    Article  Google Scholar 

  6. N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3552–63.

    Article  Google Scholar 

  7. A. Iza-Mendia, and I. Gutiérrez: Mater. Sci. Eng. A, 2013, vol. 561, pp. 40–51.

    Article  Google Scholar 

  8. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  9. S. Patra, Sk.Md. Hasan, N. Narasaiah, and D. Chakrabarti: Mater. Sci. Eng. A, 2012, vol. 538, pp. 145–55.

    Article  Google Scholar 

  10. R.L. Higginson and C.M. Sellars: Worked Examples in Quantitative Metallography, The Institute of Materials, Minerals and Mining, London, 2003, pp. 1–116.

  11. F.S. LePera: Metallography, 1979, vol. 12, pp. 263–68.

    Article  Google Scholar 

  12. W. He, W. Ma, and W. Pantleon: Mater. Sci. Eng. A, 2008, vol. 494, pp. 21–27.

    Article  Google Scholar 

  13. M. Olasolo, P. Uranga, J.M. Rodriguez-Ibabe, and B. López: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2559–69.

    Article  Google Scholar 

  14. S. Zajac, V. Schwinn, and K.H. Tacke: Mater. Sci. Forum, 2005, vols. 500–501, pp. 387–94.

    Article  Google Scholar 

  15. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J. Bae, and K. Kim: Metall. Mater. Trans. A, 2009, vol. 41A, pp. 3029–39.

    Google Scholar 

  16. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: in Proc. of 15th Conference On Mechanical Behaviors of Materials, Korea Institute of Metals and Materials, Seoul, Korea, 2001, pp. 177–86.

  17. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers Ltd., London, 1978, pp. 10-35.

    Google Scholar 

  18. E.O. Hall: Proc. Phys. Soc., 1951, vol. 64B, pp. 747–53.

    Article  Google Scholar 

  19. N.J. Petch: J. Iron Steel Inst., 1953, vol. 173, pp. 25–7.

    Google Scholar 

  20. T. Gladman, I.D. McIvor, and F.B. Pickering: J. Iron Steel Inst., 1972, vol. 210, pp. 916–30.

    Google Scholar 

  21. S. Wolf: JOM, 1967, vol. 19, pp. 22–28.

    Google Scholar 

  22. E. Nembach: Acta Metall. Mater., 1992, vol. 40, pp. 3325–30.

    Article  Google Scholar 

  23. M. Charleux, W.J. Poole, M. Militzer, and A. Descamps: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1635–47.

    Article  Google Scholar 

  24. I.A. Yakubtsov, J.D. Boyd, W.J. Liu, and E. Essadiqui: 42nd Mechanical Working and Steel Processing Conference, Iron and Steel Society/AIME, Toronto, ON, 2000, pp. 429–39.

  25. O. Bouaziz, G. Herman, M. Piette, T. Iung, and Ch. Perdrix: Proc. Thermomechanical Processing of Steels, IOM Comm., London, 2000, 342–51.

  26. F.B. Pickering, and T. Gladman: Metallurgical Developments in Carbon Steels, Iron and Steel Inst., London, 1963, Special Report No. 81.

  27. J. Lu, O. Omotoso, J.B. Wiskel, D.G. Ivey, and H. Henein: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3043–61.

    Article  Google Scholar 

  28. G. Langford, and M. Cohen: Trans. ASM, 1969, vol. 62, pp. 623–38.

    Google Scholar 

  29. L.A. Norstrom: Scand. J. Metall., 1976, vol. 5, pp. 159–65.

    Google Scholar 

  30. J.P. Naylor: Metall. Trans. A, 1979, vol. 10A, pp. 861–73.

    Article  Google Scholar 

  31. D.J. Abson, and J.J. Jonas: Met. Sci. J., 1970, vol. 4, pp. 24–28.

    Article  Google Scholar 

  32. D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A, 1989, vol. 113, pp. 1–41.

    Article  Google Scholar 

  33. N. Isasti, B. Pereda, B. López, J.M. Rodriguez-Ibabe, and P. Uranga: in Nb and Mo Metallurgy for More Sustainable Steels, H. Mohrbacher, ed., TMS, 2014.

  34. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano: Mater. Sci. Eng. A, 2005, vol. 394, pp. 339–52.

    Article  Google Scholar 

  35. A.S. Keh and S. Weissmann: in Electron Microscopy and the Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience, New York, 1963, pp. 231–300.

  36. S.S. Campos, E.V. Morales, and H.J. Kestenbach: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1245–48.

    Article  Google Scholar 

  37. H.K.D.H. Bhadeshia: Bainite in Steels, Transformations, Microstructure and Properties, 2nd ed., The Institute of Materials, London, 2001, pp. 277–79.

  38. L.P. Kubin, and A. Mortensen: Scripta Mater., 2003, vol. 48, pp. 119–25.

    Article  Google Scholar 

  39. N. Hansen, X. Huang, and G. Winther: Mater. Sci. Eng. A, 2008, vol. 494, pp. 61–7.

    Article  Google Scholar 

  40. D. Jorge-Badiola, A. Iza-Mendia, and I. Gutiérrez: J. Microsc., 2009, vol. 235, pp. 36–49.

    Article  Google Scholar 

  41. M. Takahashi, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1990, vol. 6, pp. 592–603.

    Article  Google Scholar 

  42. C. Garcia-Mateo, F.G. Caballero, C. Capdevila, and C. Garcia de Andrés: Scripta Mater., 2009, vol. 61, pp. 855–8.

    Article  Google Scholar 

  43. M.J. Roberts: Metall. Trans., 1970, vol. 1, pp. 3287-94.

    Google Scholar 

  44. R.Z. Wang, C.I. Garcia, M. Hua, K. Cho, H.T. Zhang, and A.J. Deardo: ISIJ Int., 2006, vol. 46, pp. 1345–53.

    Article  Google Scholar 

  45. T. Gladman: Mater. Sci. Technol., 1999, vol. 15, pp. 30–36.

    Article  Google Scholar 

  46. H.J. Kestenbach: Mater. Sci. Technol., 1997, vol. 13, pp. 731–39.

    Article  Google Scholar 

  47. N. Isasti: PhD Thesis, Tecnun (University of Navarra), San Sebastian, 2013.

  48. W.B. Lee, S.G. Hong, C.G. Park, and S.H. Park: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1689–98.

    Article  Google Scholar 

  49. A.J. Lapointe, and T.N. Baker: Met. Sci., 1982, vol. 16, pp. 207–16.

    Article  Google Scholar 

  50. J. Lu, D. Ivey, and H. Henein: Iron Steel Technol., 2013, vol. 10, pp. 232–44.

    Google Scholar 

  51. N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga: Met. Mater. Int., 2014 (in press).

  52. M.F. Ashby, and R. Ebeling: AIME Met. Soc. Trans., 1966, vol. 236, pp. 1396–1404.

    Google Scholar 

  53. K. Poorhaydari, and D.G. Ivey: Can. Metall. Q., 2009, vol. 48, pp. 115–22.

    Article  Google Scholar 

  54. K. Poorhaydari, B.M. Patchett, and D.G. Ivey: in Conference of Metallurgists, The International Symposium on Pipelines for the 21st Century, W. Chen, ed., The Metall. Soc. CIM, Calgary, 2005, pp. 231–34.

  55. H. Wada, and R.D. Pehlke: Metall. Trans., 1985, vol. 16, pp. 815–22.

    Article  Google Scholar 

  56. M.G. Akben, B. Bacroix, and J.J. Jonas: Acta Met., 1983, vol. 31, pp. 161–74.

    Article  Google Scholar 

  57. J. Hua, L.-X. Dua, and J. J. Wang: Mater. Sci. Eng. A, 2012, vol. 554, pp. 79–85.

    Article  Google Scholar 

  58. M.E. Bush and P.M. Kelly: Acta Metall., 1971, vol. 19, vol. 1363–72.

Download references

Acknowledgments

The financial support of the Spanish Ministry of Economy and Competitiveness (MAT2009-09250 and MAT2012-31056) and Basque Government (PI2011-17) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pello Uranga.

Additional information

Manuscript submitted February 12, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isasti, N., Jorge-Badiola, D., Taheri, M.L. et al. Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part I: Yield Strength. Metall Mater Trans A 45, 4960–4971 (2014). https://doi.org/10.1007/s11661-014-2450-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2450-7

Keywords

Navigation