Skip to main content

Advertisement

Log in

Consolidation of Carbon Nanotube Reinforced Aluminum Matrix Composites by High-Pressure Torsion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al-3 vol pct carbon nanotube (CNT) composites are fabricated by consolidation through high-pressure torsion (HPT) at room temperature. The densification behavior, microstructural evolution, and mechanical properties of Al/CNT composites are studied. The results show that density and microstructural homogeneity increase with increasing number of revolutions under a high pressure of 6 GPa. Substantial grain refinement is achieved after 10 turns of HPT with an average grain thickness of ~38 nm perpendicular to the compression axis of HPT. The Al/CNT composite shows a considerable increase in hardness and strength compared to the Al matrix. The strengthening mechanisms of the Al/CNT composite are found to be (i) grain refinement of Al matrix and (ii) Orowan looping. Raman spectroscopy and high-resolution transmission electron microscopy reveal that the structure of most of CNTs is changed during processing through mechanical milling and HPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.N. Popov: Mater. Sci. Eng. R, 2004, vol. 43, pp. 61-102.

    Article  Google Scholar 

  2. D. Poirier, R. Gauvin and R.A.L. Drew: Compos. A, 2009, vol. 40, pp. 1482-1489.

    Article  Google Scholar 

  3. J.Z. Liao and M.J. Tan: Powder Technol., 2011, vol. 208, pp. 42-48.

    Article  Google Scholar 

  4. C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li and Q. Cui: Adv. Mater., 2007, vol. 19, pp. 1128-1132.

    Article  Google Scholar 

  5. D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han and S.H. Hong: Carbon, 2012, vol. 50, pp. 2417-2423.

    Article  Google Scholar 

  6. H. Kwon, M. Estili, K. Takagi, T. Miyazaki and A. Kawasaki: Carbon, 2009, vol. 47, pp. 570-577.

    Article  Google Scholar 

  7. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1-184.

    Article  Google Scholar 

  8. H. Asgharzadeh, A. Simchi and H.S. Kim: Metall. Mater. Trans. A, 2011, vol. 42, pp. 816-824.

    Article  Google Scholar 

  9. H. Abdoli, H.R. Farnoush, H. Asgharzadeh and S.K. Sadrnezhaad: Powder Metall., 2011, vol. 54, pp. 24-29.

    Article  Google Scholar 

  10. J.B. Fogagnolo, F. Velasco, M.H. Robert and J.M. Torralba: Mater. Sci. Eng. A, 2003, vol. 342, pp. 131-143.

    Article  Google Scholar 

  11. C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma and D.H. Wu: Carbon, 1999, vol. 37, pp. 855-858.

    Article  Google Scholar 

  12. R. Zhong, H. Cong and P. Hou: Carbon, 2003, vol. 41, pp. 848-851.

    Article  Google Scholar 

  13. L. Jiang, Z. Li, G. Fan, L. Cao and D. Zhang: Carbon, 2012, vol. 50, pp. 1993–98.

    Article  Google Scholar 

  14. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka: Compos. Sci. Technol., 2010, vol. 70, pp. 2237-2241.

    Article  Google Scholar 

  15. D.H. Nam, Y.K. Kim, S.I. Cha and S.H. Hong: Carbon, 2012, vol. 50, pp. 4809-4814.

    Article  Google Scholar 

  16. A.M. Al-Qutub, A. Khalil, N. Saheb and A.S. Hakeem: Wear, 2013, vol. 297, pp. 752-761.

    Article  Google Scholar 

  17. L. Ci, Z. Ryu, N.Y. Jin-Phillipp and M. Rühle: Acta Mater., 2006, vol. 54, pp. 5367-5375.

    Article  Google Scholar 

  18. R. Derakhshandeh and A Jenabali Jahromi: Mater. Des., 2011, vol. 32, pp. 3377–88.

  19. P. Quang, Y.G. Jeong, S.C. Yoon, S.H. Hong and H.S. Kim: J. Mater. Process. Tech., 2007, vol. 187-188, pp. 318-320.

    Article  Google Scholar 

  20. D. Lahiri, S.R. Bakshi, A.K. Keshri, Y. Liu and A. Agarwal: Mater. Sci. Eng. A, 2009, vol. 523, pp. 263-270.

    Article  Google Scholar 

  21. S. Salimi, H. Izadi and A. P. Gerlich: J. Mater. Sci., 2011, vol. 46, pp. 409-415.

    Article  Google Scholar 

  22. H. Izadi and A.P. Gerlich: Carbon, 2012, vol. 50, pp. 4744-4749.

    Article  Google Scholar 

  23. Z.Y. Liu, B.L. Xiao, W.G. Wang and Z.Y. Ma: Carbon, 2012, vol. 50, pp. 1843-1852.

    Article  Google Scholar 

  24. S.-H. Joo, S.C. Yoon, C.S. Lee, D.H. Nam, S.H. Hong and H.S. Kim: J. Mater. Sci., 2010, vol. 45, pp. 4652-4658.

    Article  Google Scholar 

  25. T. Tokunaga, K. Kaneko and Z. Horita: Mater. Sci. Eng. A, 2008, vol. 490, pp. 300-304.

    Article  Google Scholar 

  26. D.C. Patil, S. A. Kori, K. Venkateswarlu, G. Das, S.N. Alhajeri and T.G. Langdon: J. Mater. Sci., 2013, vol. 48, pp. 4773-4779.

    Article  Google Scholar 

  27. A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  Google Scholar 

  28. Y. Cao, Y.B. Wang, R.B. Figueiredo, L. Chang, X.Z. Liao, M. Kawasaki, W.L. Zheng, S.P. Ringer, T.G. Langdon and Y.T. Zhu: Acta Mater., 2011, vol. 59, pp. 3903-3914.

    Article  Google Scholar 

  29. C. Casiraghi, A.C. Ferrari, and J. Robertson: Phys. Rev. B, 2005, vol. 72, pp. 085401/1–14.

  30. H.J. Choi, J.H. Shin and D.H. Bae: Compos. A, 2012, vol. 43, pp. 1061-1072.

    Article  Google Scholar 

  31. C.F. Deng, D.Z. Wang, X.X. Zhang and A.B. Li: Mater. Sci. Eng. A, 2007, vol.444, pp. 138-145.

    Article  Google Scholar 

  32. R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin and T.G. Langdon: Acta Mater., 2012, vol. 60, pp. 3190-3198.

    Article  Google Scholar 

  33. K. Edalati, R. Miresmaeili, Z. Horita, H. Kanayama and R. Pippan: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7301- 7305.

    Article  Google Scholar 

  34. P. Jenei, E.Y. Yoon, J. Gubicza, H.S. Kim, J.L. Lábár and T. Ungár: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4690-4695.

    Article  Google Scholar 

  35. A.P. Zhilyaev, K. Oh-ishi, T.G. Langdon and T.R. McNelley: Mater. Sci. Eng. A, 2005, vol. 410-411, pp. 277-280.

    Article  Google Scholar 

  36. M. Kawasaki, S.N. Alhajeri, C. Xu and T.G. Langdon: Mater. Sci. Eng. A, 2011, vol. 529, pp. 345-351.

    Article  Google Scholar 

  37. C. Xu, Z. Horita and T.G. Langdon: Acta Mater., 2008, vol. 56, pp. 5168-5176.

    Article  Google Scholar 

  38. C. Xu, Z. Horita and T.G. Langdon: Acta Mater., 2007, vol. 55, pp. 203-212.

    Article  Google Scholar 

  39. H. Li, A. Misra, Y. Zhu, Z. Horita, C.C. Koch and T.G. Holesinger: Mater. Sci. Eng. A, 2009, vol. 523, pp. 60-64.

    Article  Google Scholar 

  40. H. Asgharzadeh, A. Simchi and H.S. Kim: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4897-4905.

    Article  Google Scholar 

  41. A.S. Argon and P. Haasen: Acta Metall. Mater., 1993, vol. 41, pp. 3289-3306.

    Article  Google Scholar 

  42. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch and B. Baudelet: Acta Mater., 1996, vol. 44, pp. 4705-4712.

    Article  Google Scholar 

  43. M. Zehetbauer and V. Seumer: Acta Metall. Mater., 1993, vol. 41, pp. 577-588.

    Article  Google Scholar 

  44. X.G. Qiao, N. Gao and M.J. Starink: Philos. Mag., 2012, vol. 92, pp. 446-470.

    Article  Google Scholar 

  45. R. George, K.T. Kashyap, R. Rahul and S. Yamdagni: Scripta Mater., 2005, vol. 53, pp. 1159-1163.

    Article  Google Scholar 

  46. R. Vogt, Z. Zhang, Y. Li, M. Bonds, N.D. Browning, E.J. Lavernia and J.M. Schoenung: Scripta Mater., 2009, vol. 61, pp. 1052-1055.

    Article  Google Scholar 

  47. T. Tokunaga, K. Kaneko, K. Sato, and Z. Horita: Scripta Mater., 2008, vol. 58, pp. 735-738.

    Article  Google Scholar 

  48. H. Asgharzadeh, A. Simchi and H.S. Kim: Mater. Charact., 2013, vol. 75, pp. 108-114.

    Article  Google Scholar 

  49. E. Orowan: Z Phys., 1934, vol. 89, pp. 634-659.

    Article  Google Scholar 

  50. T.H. Courtney: Mechanical behavior of materials. Singapore: McGraw-Hill Book Co.; 2000.

    Google Scholar 

  51. M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427-556.

    Article  Google Scholar 

  52. H.J. Choi, J.H. Shin and D.H. Bae: Compos. Sci. Technol., 2011, vol. 71, pp. 1699-1705.

    Article  Google Scholar 

  53. K. Prashantha, J. Soulestin, M.F. Lacrampe, P. Krawczak, G. Dupin and M. Claes: Compos. Sci. Technol., 2009, vol. 69, pp. 1756-1763.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by A.D.D. through basic research Project (11-01-04-08). H.A. acknowledges the support of his visiting fellowship by the POSTECH Basic Science Research Institute Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamed Asgharzadeh or Hyoung Seop Kim.

Additional information

Manuscript submitted December 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharzadeh, H., Joo, SH. & Kim, H.S. Consolidation of Carbon Nanotube Reinforced Aluminum Matrix Composites by High-Pressure Torsion. Metall Mater Trans A 45, 4129–4137 (2014). https://doi.org/10.1007/s11661-014-2354-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2354-6

Keywords

Navigation