Skip to main content
Log in

Strain Rate Sensitivity, Work Hardening, and Fracture Behavior of an Al-Mg TiO2 Nanocomposite Prepared by Friction Stir Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Annealed and wrought AA5052 aluminum alloy was subjected to friction stir processing (FSP) without and with 3 vol pct TiO2 nanoparticles. Microstructural studies by electron backscattered diffraction and transmission electron microscopy showed the formation of an ultra-fine-grained structure with fine distribution of TiO2 nanoparticles in the metal matrix. Nanometric Al3Ti and MgO particles were also observed, revealing in-situ solid-state reactions between Al and Mg with TiO2. Tensile testing at different strain rates determined that FSP decreased the strain rate sensitivity and work hardening of annealed Al-Mg alloy without and with TiO2 nanoparticles, while opposite results were obtained for the wrought alloy. Fractographic studies exhibited that the presence of hard reinforcement particles changed the fracture mode from ductile rupture to ductile-brittle fracture. Notably, the failure mechanism was also altered from shear to tensile rupture as the strain rate increased. Consequently, the fracture surface contained hemispherical equiaxed dimples instead of parabolic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. INSTRON is a trademark of Illinois Tool Works Inc. (ITW), Glenview, IL.

References

  1. T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, United Kingdom, 1993.

    Book  Google Scholar 

  2. T.S. Srivatsan, T.S. Sudarshan, and E.J. Lavernia: Progr. Mater Sci., 1995, vol. 39, pp. 317–409.

    Article  Google Scholar 

  3. C. Suryanarayana: J. Alloys Compd., 2011, vol. 509, pp. 229–34.

    Article  Google Scholar 

  4. C. Suryanarayana and N. Al-Aqeeli: Progr. Mater Sci., 2013, vol. 58, pp. 383–502.

    Article  Google Scholar 

  5. H. Asgharzadeh, A. Simchi, and H.S. Kim: Mater. Sci. Eng., A, 2010, vol. 527, pp. 4897–4905.

    Article  Google Scholar 

  6. M. Krasnowski and T. Kulik: Scripta Mater., 2003, vol. 48, pp. 1489–94.

    Article  Google Scholar 

  7. H.X. Peng, D.Z. Wang, L. Geng, C.K. Yao, and J.F. Mao: Scripta Mater., 1997, vol. 37, pp. 199–204.

    Article  Google Scholar 

  8. H. Nasiri, J. Vahdati Khaki, and S.M. Zebarjad: J. Alloys Compd., 2011, vol. 509, pp. 5305–08.

    Article  Google Scholar 

  9. B. Adamczyk-Cieślak, J. Mizera, and K.J. Kurzydłowski: Mater. Characterization, 2011, vol. 62, pp. 327–32.

    Article  Google Scholar 

  10. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang: Acta Mater., 2006, vol. 54, pp. 5241–49.

    Article  Google Scholar 

  11. C.J. Hsu, P.W. Kao, and N.J. Ho: Scripta Mater., 2005, vol. 53, pp. 341–45.

    Article  Google Scholar 

  12. I.S. Lee, P.W. Kao, and N.J. Ho: Intermetallics, 2008, vol. 16, pp. 1104–08.

    Article  Google Scholar 

  13. Q. Liu, L. Ke, F. Liu, C. Huang, and L. Xing: Mater. Des., 2013, vol. 45, pp. 343–48.

    Article  Google Scholar 

  14. M.A. Moghaddas and S.F. Kashani-Bozorg: Mater. Sci. Eng., A, 2013, vol. 559, pp. 187–93.

    Article  Google Scholar 

  15. J. Qian, J. Li, J. Xiong, F. Zhang, and X. Lin: Mater. Sci. Eng., A, 2012, vol. 550, pp. 279–85.

    Article  Google Scholar 

  16. M. Yang, C. Xu, C. Wu, K.C. Lin, Y.J. Chao, and L. An: J. Mater. Sci., 2010, vol. 45, pp. 4431–38.

    Article  Google Scholar 

  17. Q. Zhang, B.L. Xiao, W.G. Wang, and Z.Y. Ma: Acta Mater., 2012, vol. 60, pp. 7090–7103.

    Article  Google Scholar 

  18. R.S. Mishra, Z.Y. Ma, and I. Charit: Mater. Sci. Eng., A, 2003, vol. 341, pp. 307–10.

    Article  Google Scholar 

  19. Q. Zhang, B.L. Xiao, D. Wang, and Z.Y. Ma: Mater. Chem. Phys., 2011, vol. 130, pp. 1109–17.

    Article  Google Scholar 

  20. Q. Zhang, B.L. Xiao, Q.Z. Wang, and Z.Y. Ma: Mater. Lett., 2011, vol. 65, pp. 2070–72.

    Article  Google Scholar 

  21. L. Ke, C. Huang, L. Xing, and K. Huang: J. Alloys Compd., 2010, vol. 503, pp. 494–99.

    Article  Google Scholar 

  22. X. Feng, H. Liu, and S. Suresh Babu: Scripta Mater., 2011, vol. 65, pp. 1057–60.

    Article  Google Scholar 

  23. F. Iida, T. Suzuki, E. Kuramoto, and S. Takeuchi: Acta Metall., 1979, vol. 27, pp. 637–47.

    Article  Google Scholar 

  24. R. Korla and A.H. Chokshi: Scripta Mater., 2010, vol. 63, pp. 913–16.

    Article  Google Scholar 

  25. F. Li: Scripta Metall. Mater., 1995, vol. 32, pp. 463–68.

    Article  Google Scholar 

  26. A.C. Magee and L. Ladani: Mater. Sci. Eng., A, 2013, vol. 582, pp. 276–83.

    Article  Google Scholar 

  27. E. Romhanji, M. Dudukovska, and D. Glišić: J. Mater. Process. Technol., 2002, vols. 125–126, pp. 193–98.

    Article  Google Scholar 

  28. K.C. Chan and G.Q. Tong: Mater. Lett., 2001, vol. 51, pp. 389–95.

    Article  Google Scholar 

  29. M.O. Lai, L. Lu, and B.Y. Chung: Compos. Struct., 2002, vol. 57, pp. 183-187.

    Article  Google Scholar 

  30. ASTM Standard E8M: Tension Testing of Metallic Materials, Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 1998.

  31. M.M.Z. Ahmed, B.P. Wynne, W.M. Rainforth, and P.L. Threadgill: Scripta Mater., 2011, vol. 64, pp. 45–48.

    Article  Google Scholar 

  32. M.M.Z. Ahmed, B.P. Wynne, W.M. Rainforth, and P.L. Threadgill: Mater. Characterization, 2012, vol. 64, pp. 107–17.

    Article  Google Scholar 

  33. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato and H. Kokawa: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1962–69.

    Article  Google Scholar 

  34. S. Mironov, K. Masaki, Y.S. Sato, and H. Kokawa: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1153–57.

    Article  Google Scholar 

  35. W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, 3rd ed., Oxford University Press, New York, NY, 1993.

    Google Scholar 

  36. K.K. Chawla and M.A. Meyers: in Encyclopedia of Physical Science and Technology (Third Edition), Robert A. Meyers, ed., Academic Press, New York, NY, 2003, pp. 467–84.

  37. T.R. McNelley, S. Swaminathan, and J.Q. Su: Scripta Mater., 2008, vol. 58, pp. 349–54.

    Article  Google Scholar 

  38. L.P. Troeger and E.A. Starke, Jr.: Mater. Sci. Eng., A, 2000, vol. 293, pp. 19–29.

    Article  Google Scholar 

  39. C.I. Chang, C.J. Lee, and J.C. Huang: Scripta Mater., 2004, vol. 51, pp. 509–14.

    Article  Google Scholar 

  40. W. Woo, H. Choo, D.W. Brown, S.C. Vogel, P.K. Liaw, and Z. Feng: Acta Mater., 2006, vol. 54, pp. 3871–82.

    Article  Google Scholar 

  41. T. Shibayanagi, A.P. Gerlich, K. Kashihara, and T.H. North: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 920–31.

    Article  Google Scholar 

  42. D.P. Field, T.W. Nelson, Y. Hovanski, and K.V. Jata: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2869–77.

    Article  Google Scholar 

  43. E.O. Hall: Yield Point Phenomena in Metals and Alloys, Plenum Press, New York, NY, 1970.

    Book  Google Scholar 

  44. Y. Huang, W. Zheng, and J. Shen: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 5202–08.

    Article  Google Scholar 

  45. S. Ig Hong: Mater. Sci. Eng., 1986, vol. 82, pp. 175–85.

    Article  Google Scholar 

  46. V.A. Romanova, R.R. Balokhonov, and S. Schmauder: Acta Mater., 2009, vol. 57, pp. 97–107.

    Article  Google Scholar 

  47. V.M. Segal: Mater. Sci. Eng., A, 2005, vol. 406, pp. 205–16.

    Article  Google Scholar 

  48. K. Manigandan, T.S. Srivatsan, D. Tammana, B. Poorganji, and V.K. Vasudevan: Mater. Sci. Eng., A, 2014, vol. 601, pp. 29–39.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Frantisek Simančík, Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, for useful discussions and help in performing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Simchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabakhshi, F., Simchi, A., Kokabi, A. et al. Strain Rate Sensitivity, Work Hardening, and Fracture Behavior of an Al-Mg TiO2 Nanocomposite Prepared by Friction Stir Processing. Metall Mater Trans A 45, 4073–4088 (2014). https://doi.org/10.1007/s11661-014-2330-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2330-1

Keywords

Navigation