Skip to main content
Log in

Recrystallization and Grain Growth of 316L Stainless Steel Wires

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Recrystallization and grain growth behaviors of 316L stainless steel wires with a diameter of 12 µm were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy (TEM), and X-ray diffraction techniques. Heavily cold-drawn wires were isothermally held at temperatures from 1073 K to 1223 K (800 °C to 950 °C) for various holding times. Optical microscopy and TEM observations showed that recrystallization grains have irregular shape and that twins exist. The texture formed during drawing and annealing processes of the wires, as measured by X-ray methods, showed a fiber texture approximated by a 〈111〉 and a 〈100〉 component. The value of the grain growth exponent n was calculated, and the kinetic rates were plotted using the Arrhenius equation. Results show that the activation energy of the grain growth for 316L stainless steel wire was determined to be 407 kJ/mol, which was much higher than that of the bulk 316L stainless steel. The small wire diameter and the existence of texture played important roles in the increase of the activation energy for grain growth of the wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL-2100 is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. H.S. Wang, J.R.Yang, and H. Bhadeshia: Mater. Sci. Technol., 2005, vol. 21, pp. 1323–28.

    Article  Google Scholar 

  2. H.S. Wang, R.C. Wei, C.Y. Huang, and J.R. Yang: Phil. Mag., 2006, vol. 86, pp. 237–51.

    Article  Google Scholar 

  3. C.W. Lou: Text. Res. J., 2005, vol. 77, pp. 466–73.

    Article  Google Scholar 

  4. J.H. Lin, C.W. Lou, C.H. Chang, Y.S. Chen, G.T. Lin, and C.H. Lee: J. Mater. Process. Technol., 2007, vol. 192, pp. 97–100.

    Article  Google Scholar 

  5. K.B. Cheng, T.W. Cheng, K.C. Lee, T.H. Ueng, and W.H. Hsing: Compos. Part A: Appl. Sci. Manuf., 2003, vol. 74, pp. 971–78.

    Article  Google Scholar 

  6. K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, and K. Nakajima: J. Cryst. Growth, 2004, vol. 266, pp. 441–48.

    Article  Google Scholar 

  7. D.M. Collins, B.D. Conduit, H.J. Stone, M.C. Hardy, G.J. Conduit, and R.J. Mitchell: Acta. Mater., 2013, vol. 61, pp. 3378–91.

    Article  Google Scholar 

  8. Ayad, F. Wagner, N. Rouag, and A.D. Rollett: Comp. Mater. Sci., 2013, vol. 68, pp. 189–97.

    Article  Google Scholar 

  9. W. Ye, R. Le Gall, and G. Saindrenan: Mater. Sci. Eng. A, 2002, vol. 332, pp. 41–46.

    Article  Google Scholar 

  10. Z.X. Xie, H.Y. Gao, J. Wang, Y. Yu, Y. Fang, and B.D. Sun: J. Iron. Steel. Res. Int., 2011, vol. 18, pp. 45–51.

    Article  Google Scholar 

  11. M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole: Acta Mater., 2012, vol. 60, pp. 1015–26.

    Article  Google Scholar 

  12. R. Colás: Mater. Charact., 2001, vol. 46, pp. 353–58.

    Article  Google Scholar 

  13. J. Mizera, J.W. Wyrzykowski, and K.J. Kurzydlowski: Mater. Sci. Eng. A, 1988, vol. 104, pp. 157–62.

    Article  Google Scholar 

  14. F.K. Yan, G.Z. Liu, N.R. Tao, and K. Lu: Acta Mater., 2012, vol. 60, pp. 1059–71.

    Article  Google Scholar 

  15. E. Bayraktar, D. Kaplan, L. Devillers, and J.P. Hevalier: J. Mater. Process. Technol., 2007, vol. 189, pp. 114–25.

    Article  Google Scholar 

  16. S.T. Yang, W.S. Hwang, T.W. Shyr, and I.L. Cheng: J. Magn. Magn. Mater., 2012, vol. 324, pp. 2388–91.

    Article  Google Scholar 

  17. T.W. Shyr, J. W. Shie, S.J. Huang, S.T. Yang, and W.S. Hwang: Mater. Chem. Phys., 2010, vol. 122, pp. 273–77.

    Article  Google Scholar 

  18. J. Almanstötter and M. Rühle: Int. J. Refract. Met. Hard Mater., 1997, vol. 15, pp. 295–300.

    Article  Google Scholar 

  19. J.H. Cho, A.D. Rollett, J.-S. Cho, Y.-J. Park, S.-H. Park, and K.H. Oh: Metall. Mater. Trans. A, 2006, vol. 432, pp. 202–15.

  20. Z. Yang, J. Li, Z. Xi, J. Zhang, and X. Wang: Rare Met. Mater. Eng., 2003, vol. 32, pp. 748–51.

    Google Scholar 

  21. J.E. Burke: AIME Trans., 1949, vol. 180, pp. 73–91.

    Google Scholar 

  22. J.E. Burke and D. Turnbull: Progr. Met Phys., 1952, vol. 3, p. 220.

    Article  Google Scholar 

  23. J.H. Cho, Y.W. Kim, K.H. Oh, J.S. Cho, J.T. Moon, J. Lee, and A.D. Rollett: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1113–25.

    Article  Google Scholar 

  24. B.P. Kashyap and K. Tangri: Mater. Sci. Eng. A, 1992, vol. 149, pp. 13–16.

    Article  Google Scholar 

  25. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Holland, 1995, pp. 336–77.

    Google Scholar 

  26. S.G. Chowdhury, S. Das, B. Ravikumar, and P.K. DE: Metall. Mater Trans. A, 2006, vol. 37A, pp. 2349–59.

  27. A.T. English and G.Y. Chin: Acta Mater., 1965, vol. 13, pp. 1013–16.

    Article  Google Scholar 

  28. G. Linßen, H.D. Mengelberg, and H.P. Stüwe: Z. Metallkd., 1963, vol. 55, pp. 600–04.

    Google Scholar 

  29. E. Aernoudt, I. Kokubo, and H.P. Stüwe: Z. Metallkd., 1966, vol. 57, pp. 216–20.

    Google Scholar 

  30. H. Ahlborn: Z. Metallkd., 1965, vol. 56, pp. 205–15.

    Google Scholar 

  31. H. Park and D.N. Lee: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 531–41.

    Article  Google Scholar 

  32. P.A. Beck, J.C. Kremer, L.J. Demer, and M.L. Holzworth: Trans. Am. Inst. Min. Metall. Eng., 1948, vol. 175, pp. 372–400.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 51134003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Additional information

Manuscript submitted December 25, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Liu, Y., Wang, Y. et al. Recrystallization and Grain Growth of 316L Stainless Steel Wires. Metall Mater Trans A 45, 3446–3453 (2014). https://doi.org/10.1007/s11661-014-2305-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2305-2

Keywords

Navigation