Skip to main content
Log in

Effect of Grain Size on Dynamic Recrystallization and Hot-Ductility Behaviors in High-Nitrogen CrMn Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

The dynamic recrystallization and hot-ductility behaviors in fine- and coarse-grained 18Mn18Cr0.5N steel were determined between 1273 K and 1473 K (1000 °C and 1200 °C) at a strain rate of 0.1 s−1 through compression and tensile tests. The microstructure was examined using optical microscopy, electron backscatter diffraction analysis, and transmission electron microscopy. The fracture morphology was observed using scanning electron microscopy. The coarse initial grain size delays the initiation and development of dynamic recrystallization and then results in a lower hot ductility. The nucleation of dynamic recrystallization grains at triple junctions and at grain boundaries is mainly accompanied by the evolution of twinning and low-angle grain boundaries, respectively. The nucleation mechanism of dynamic recrystallization grains affects the dynamic recrystallization grain size. Dynamic recrystallization grains evolved by the necklace mechanism are coarser than those evolved by the ordinary mechanism. The hot ductility of 18Mn18Cr0.5N steel is very sensitive to grain size, particularly at lower temperatures. The fine-grained material can tolerate higher damage before fracture. Finally, the optimized hot-working process was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Reference

  1. J.W. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159-69.

    Article  Google Scholar 

  2. Z.H. Wang, W.T. Fu, S.H. Sun, H. Li, Z.Q. Lv, and D.L. Zhao: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1025-32.

    Article  Google Scholar 

  3. Z.H. Wang, W.T. Fu, S.H. Sun, Z.Q. Lv, and W.H. Zhang: J. Mater. Sci. Technol., 2010, vol. 26, pp. 798-802.

    Article  Google Scholar 

  4. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

  5. Y.P. Lang, Y. Zhou, F. Rong, H.T. Chen, Y.Q. Weng, and J. Su: J. Iron Steel Res. Int., 2010, vol. 17, pp. 45-49.

    Article  Google Scholar 

  6. C.M. Hong, J. Shi, L.Y. Sheng, W.C. Cao, W.J. Hui, and H. Dong: Mater. Des., 2011, vol. 32, pp. 3711-17.

    Article  Google Scholar 

  7. M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado: Acta Mater., 2005, vol. 53, pp. 4605-12.

    Article  Google Scholar 

  8. A.D. Manshadi and P.D. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2830-40.

    Article  Google Scholar 

  9. A. Belyakov, H. Miura, and T. Sakai: Scripta Mater., 2000, vol. 43, pp. 21-26.

    Article  Google Scholar 

  10. A. Belyakov, K. Tsuzaki, H. Miura, and T. Sakai: Acta Mater., 2003, vol. 51, pp. 847-61.

    Article  Google Scholar 

  11. A.D. Manshadi, M.R. Barnett, and P.D. Hodgson: Mater. Sci. Eng. A, 2008, vol. 485, pp. 664-72.

    Article  Google Scholar 

  12. M.R. Barnett, A.G. Beer, D. Atwell, and A. Oudin: Scripta Mater., 2004, vol. 51, pp. 19-24.

    Article  Google Scholar 

  13. C. Rehrl, S. Kleber, O. Renk, and R. Pippan: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6163-72.

    Article  Google Scholar 

  14. M. Jafari and A. Najafizadeh: Mater. Sci. Eng. A, 2009, vol. 501, pp. 16-25.

    Article  Google Scholar 

  15. C. Rehrl, S. Kleber, O. Renk, and R. Pippan: Mater. Sci. Eng. A, 2012, vol. 540, pp. 55-62.

    Article  Google Scholar 

  16. A.M.W. Sarnek, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 2002, vol. 323, pp. 177-86.

    Article  Google Scholar 

  17. A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 1998, vol. 255, pp. 139-47.

    Article  Google Scholar 

  18. J. Deng, Y.C. Lin, S.S. Li, J. Chen, and Y. Ding: Mater. Des., 2013, vol. 49, pp. 209-19.

    Article  Google Scholar 

  19. N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev: Acta Mater., 2010, vol. 58, pp. 3624-32.

    Article  Google Scholar 

  20. M. Faccoli and R. Roberti: J. Mater. Sci., 2013, vol. 48, pp. 5196-203.

    Article  Google Scholar 

Download references

Acknowledgments

The project is supported by the Natural Science Foundation of Hebei Province for Distinguished Young Scholars (E2011203131) and the Natural Science Foundation–Steel and Iron Foundation of Hebei Province (E2013203110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wantang Fu.

Additional information

Manuscript submitted January 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Sun, S., Wang, B. et al. Effect of Grain Size on Dynamic Recrystallization and Hot-Ductility Behaviors in High-Nitrogen CrMn Austenitic Stainless Steel. Metall Mater Trans A 45, 3631–3639 (2014). https://doi.org/10.1007/s11661-014-2290-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2290-5

Keywords

Navigation