Skip to main content
Log in

Optimizing the Morphology and Stability of Retained Austenite in a δ-TRIP Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

δ-TRIP is a low-alloy steel in which ferrite persists at all temperatures in the solid-state, with the remaining microstructure consisting of carbide-free bainite and carbon-enriched retained austenite. The present work explores for the first time, how changes in the intercritical annealing temperature and the transformation conditions associated with bainite influence the morphology and stability of the austenite, and hence the behavior of the microstructure during tensile deformation. It is found that the structure can be optimized to consist of a combination of blocky and film austenite that undergo transformation over a range of plastic strains, thus minimizing the possibility of plastic instabilities, and hence imparting considerable strength and uniform elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Chatterjee, M. Murugananth, H. Bhadeshia, Materials Science and Technology 23 (2007) 819-827.

    Article  Google Scholar 

  2. B. De Cooman, Current Opinion in Solid State and Materials Science 8 (2004) 285-303.

    Article  Google Scholar 

  3. P. Jacques, Current Opinion in Solid State and Materials Science 8 (2004) 259-265.

    Article  Google Scholar 

  4. O. MATSUMURA, Y. SAKUMA, H. TAKECHI, Transactions of the Iron and Steel Institute of Japan 27 (1987) 570-579.

    Article  Google Scholar 

  5. O. Matsumura, Y. Sakuma, H. Takechi, Scripta Metallurgica 21 (1987) 1301-1306.

    Article  Google Scholar 

  6. B. Mintz, International materials reviews 46 (2001) 169-197.

    Article  Google Scholar 

  7. Y. Sakuma, O. Matsumura, H. Takechi, Metallurgical Transactions A 22 (1991) 489-498.

    Article  Google Scholar 

  8. H. Yi, K. Lee, J. Lim, H. Bhadeshia, Science and Technology of Welding & Joining 15 (2010) 619-624.

    Article  Google Scholar 

  9. H. Yi, K. Lee, H. Bhadeshia, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 467 (2011) 234-243.

    Article  Google Scholar 

  10. H. L. Yi, S. K. Ghosh, W. J. Liu, K. Y. Lee and H. K. D. H. Bhadeshia, Materials Science and Technology 26 (2010) 817-823.

    Article  Google Scholar 

  11. J.H. Ryu, D.-I. Kim, H.S. Kim, H. Bhadeshia, D.-W. Suh, Scripta Materialia 63 (2010) 297-299.

    Article  Google Scholar 

  12. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scripta Mater., 2013, vol. 68, pp. 321-24

    Article  Google Scholar 

  13. H. Yi, K. Lee, H. Bhadeshia, Materials Science and Engineering: A 528 (2011) 5900-5903.

    Article  Google Scholar 

  14. R. Hill, C. Howard, Journal of Applied Crystallography 20 (1987) 467-474.

    Article  Google Scholar 

  15. H.M. Rietveld: Acta Crystallogr., 1967, vol. 22, pp. 151–52, DOI:10.1107/S0365110X67000234

  16. H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71, DOI:10.1107/S0021889869006558

  17. D. Dyson, B. Holmes, J Iron Steel Inst 208 (1970) 469-474.

    Google Scholar 

  18. J. Pak, H. Bhadeshia, L. Karlsson, E. Keehan, Science and Technology of Welding & Joining 13 (2008) 593-597.

    Article  Google Scholar 

  19. B.H. Peet M.: Mucg83, http://www.msm.cam.ac.uk/map/steel/subs/mucg-b.html, 2006, Accessed 22 Jan 2014.

  20. H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Metals, London, 1992.

    Google Scholar 

  21. S J Matas and R F Hehemann, TMS AIME 221 (1961) 179-185.

    Google Scholar 

  22. H K D H Bhadeshia and A R Waugh, Acta Metall. 30 (1982) 775-784.

    Article  Google Scholar 

  23. A. Itami, M. Takahashi, K. Ushioda, ISIJ international 35 (1995) 1121-1127.

    Article  Google Scholar 

  24. H.-S. Yang, H. Bhadeshia, Scripta materialia 60 (2009) 493-495.

    Article  Google Scholar 

  25. T. Sakaki, K. Sugimoto, and T. Fukuzato, Acta Metall. 1983, vol. 31, pp. 1737-1746.

    Article  Google Scholar 

  26. Y. Sakuma, D.K. Matlock, and G. Krauss, Metall. Trans. A 1992, vol. 23, pp. 1221-1232.

    Article  Google Scholar 

  27. Y. Sakuma, D.K. Matlock, and G. Krauss, Metall. Trans. A 1992, vol. 23, pp. 1233-1241

    Article  Google Scholar 

  28. M. Sherif, C.G. Mateo, T. Sourmail, H. Bhadeshia, Materials science and technology 20 (2004) 319-322.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the laboratory facilities support at GIFT, and to POSCO for the Steel Innovation Programme. In addition, this work is partially supported by the National Natural Science Foundation of China (Grant No. 51204051) and the Fundamental Research Funds for the Central Universities (Grant Nos. N120507001 and N120607001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Yi.

Additional information

Manuscript submitted July 12, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, H.L., Chen, P. & Bhadeshia, H.K.D.H. Optimizing the Morphology and Stability of Retained Austenite in a δ-TRIP Steel. Metall Mater Trans A 45, 3512–3518 (2014). https://doi.org/10.1007/s11661-014-2267-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2267-4

Keywords

Navigation