Skip to main content
Log in

A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 03 April 2014

Abstract

Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Katayama, N. Seto, J.-D. Kim, and A. Matsunawa: ICALEO’97: Laser Materials Processing, vol. 83, pp. 17–20, California, 1997.

  2. A.F.H. Kaplan, M. Mizutani, S. Katayama, and A Matsunawa: J. Phys. D, 2002, vol. 35, pp. 1218–28.

    Article  Google Scholar 

  3. T.Y. Kuo and S.L. Jeng: J. Phys. D, 2005, vol. 38, pp. 722–28.

    Article  Google Scholar 

  4. H. Zhao and T. DebRoy: Weld. J., 2001, vol. 80, pp. 204–10.

    Google Scholar 

  5. F. Abt, M. Boley, R. Weber, T. Graf, G. Popko, and S. Nau: Phys. Procedia, 2011, vol. 12, pp. 761–70.

    Article  Google Scholar 

  6. Y. Arata, N. Abe, and T. Oda: Proc. ICALEO, 1983, vol. 83, pp. 59–66.

    Google Scholar 

  7. S. Fujinaga, H. Takenaka, T. Narikiyo, S. Katayama and A. Matsunawa: J. Phys. D, 2000, vol. 33, pp. 492–97.

    Article  Google Scholar 

  8. N. Seto, S. Katayama, and A. Matsunawa: J. Laser. Appl., 2000, vol. 12, pp. 245–50.

    Article  Google Scholar 

  9. J. Y. Lee, S. H. Ko, D. F. Farson, and C. D. Yoo: J. Phys. D, 2002, vol. 35, pp. 1570–76.

    Article  Google Scholar 

  10. J. Zhou, H.L. Tsai, and Pei-Chung Wang: J. Heat. Trans., 2006, vol. 128, pp. 680–90.

    Article  Google Scholar 

  11. J. Zhou and H.L. Tsai: J. Heat. Trans., 2007, vol. 129, pp. 1014–24.

    Article  Google Scholar 

  12. J. Zhou and H.L. Tsai: Int. J. Heat. Mass. Trans., 2007, vol. 50, pp. 2217–35.

    Article  Google Scholar 

  13. J. Zhou and H.L. Tsai: Int. J. Heat. Mass. Trans., 2008, vol. 51, pp. 4353–66.

    Article  Google Scholar 

  14. J. Zhou, H.L. Tsai, and T.F. Lehnhoff: J. Phys. D, 2006, vol. 39, pp. 5338–55.

  15. H. Ki, J. Mazumder, and P. S. Mohanty: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1817–30.

    Article  Google Scholar 

  16. H. Ki, J. Mazumder, and P. S. Mohanty: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1831–42.

    Article  Google Scholar 

  17. J.H. Cho and S.J. Na: Weld. J., 2009, vol. 88, pp. 35–43.

    Google Scholar 

  18. S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen: J. Phys. D, 2011, vol. 44, p. 025301.

    Article  Google Scholar 

  19. S. Pang, L. Chen, T. Chen, Y. Yin, L. Hu, and J. Liu: Laser. Technol., 2010, vol. 34, pp. 614–18.

    Google Scholar 

  20. S. Osher and R. Fedkiw: Level set Methods and Dynamic Implicit Surfaces, vol. 153, Springer-Verlag, New York, 2003.

  21. V. Semak and A. Matsunawa: J. Phys. D, 1997, vol. 30, pp. 2541–52.

    Article  Google Scholar 

  22. S.I. Anisimov: Sov. Phys. JETP, 1968, vol. 27, pp. 182–83.

    Google Scholar 

  23. H.B. Du: PhD Thesis, Huazhong University of Science and Technology, 2004.

  24. A. Kaplan: J. Phys. D, 1994, vol. 27, pp. 1805–14.

    Article  Google Scholar 

  25. H. Zhao, W. Niu, B. Zhang, Y. Lei, M. Kodama, and T. Ishide: J. Phys. D, 2011, vol. 44, pp. 485302–314.

    Article  Google Scholar 

  26. H. Zhao and T. DebRoy: J. Appl. Phys., 2003, vol. 93, pp. 10089–096.

    Article  Google Scholar 

  27. J. Hoffman and Z. Szymanski: J. Phys. D, 2004, vol. 37, pp. 1792–99.

    Article  Google Scholar 

  28. T. Moscicki, J. Hoffman, and Z. Szymanski: J. Phys. D, 2006, vo1. 39, pp. 685–92.

    Article  Google Scholar 

  29. C.M. Wang, X.X. Meng, W Huang, X.Y. Hu, and A.Q. Duan: J. Mater. Proc. Tech., 2011, vol. 211, pp. 668–74.

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (No. 51105153), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20100142110079), the Fundamental Research Fund for Central Universities (No. 2011QN082), and the Talent Recruitment Foundation of Huazhong University of Science and Technology (No. 0124110034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyong Pang.

Additional information

Manuscript submitted May 6, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, S., Chen, W. & Wang, W. A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy. Metall Mater Trans A 45, 2808–2818 (2014). https://doi.org/10.1007/s11661-014-2231-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2231-3

Keywords

Navigation