Skip to main content
Log in

Particle Distribution and Hot Workability of In Situ Synthesized Al-TiCp Composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Particle distribution and hot workability of an in situ Al-TiCp composite were investigated. The composite was fabricated by an in situ casting method using the self-propagating high-temperature synthesis of an Al-Ti-C system. Hot-compression tests were carried out, and power dissipation maps were constructed using a dynamic material model. Small globular TiC particles were not themselves fractured, but the clustering and grain boundary segregation of the particles contributed to the cracking of the matrix by causing the debonding of matrix/particle interfaces and providing a crack propagation path. The efficiency of power dissipation increased with increasing temperature and strain rate, and the maximum efficiency was obtained at a temperature of 723 K (450 °C) and a strain rate of 1/s. The microstructural mechanism occurring in the maximum efficiency domain was dynamic recrystallization. The role of particles in the plastic flow and the microstructure evolution were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.C. Tjong and Z. Y. Ma: Mater. Sci. Eng. A, 2000, vol. 29, pp. 49-113.

    Article  Google Scholar 

  2. I. Gotman, M.J. Koczak, and E. Shteseel: Mater. Sci. Eng. A, 1994, vol. 187, pp. 189-199.

    Article  Google Scholar 

  3. C.F. Feng and L. Froyen: Scripta Mater., 1997, vol. 36, pp. 467-473.

    Article  Google Scholar 

  4. Z. Wang, X. Liu, J. Zhang, and X. Bian: J. Mater. Sci., 2004, vol. 39, pp. 667-669.

    Article  Google Scholar 

  5. Y.F. Liang, J.E. Zhou, S.Q. Dong: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7955-7960.

    Article  Google Scholar 

  6. B. Yang, G. Chen, and J. Zhang: Mater. Des., 2001, vol. 22, pp. 645-650.

    Article  Google Scholar 

  7. P. Li, E.G. Kandalova, and V.I. Nikitin: Mater. Lett., 2005, vol. 59, pp. 2545-2548.

    Article  Google Scholar 

  8. M.S. Song, M.X. Zhang, S.G. Zhang, B. Huang, and J.G. Li: Mater. Sci. Eng. A, 2008, vol. 473, pp. 166-171.

    Article  Google Scholar 

  9. W.H. Jiang, G.H. Song, X.L. Han, C.L. He, and H.C. Ru: Mater. Lett., 1997, vol. 32, pp. 63-65.

    Article  Google Scholar 

  10. Y.H. Cho, J.M. Lee, H.J. Kim, J.J. Kim, and S.H. Kim: Met. Mater. Int., 2013, vol. 19, pp. 1109-1116.

    Article  Google Scholar 

  11. T.D. Xia, T.Z. Liu, W.J. Zhao, B.Y. Ma, and T.M. Wang: J. Mater. Sci., 2001, vol. 36, pp. 5581-5584.

    Article  Google Scholar 

  12. X.C. Tong: J. Mater. Sci., 1998, vol. 33, pp. 5365-5374.

    Article  Google Scholar 

  13. L. Lü, M.O. Lai, H.L. Teo, and C.F. Feng: Scripta Mater., 2001, vol. 45, pp. 1017-1023.

    Article  Google Scholar 

  14. C.S. Ramesh, A. Ahamed, B.H. Channabasappa, and R. Keshavamurthy: Mater. Des., 2010, vol. 31, pp. 2230-2236.

    Article  Google Scholar 

  15. V.C. Srivastava, V. Jindal, V. Uhlenwinkel, and K. Bauckhage: Mater. Sci. Eng. A, 2008, vol. 477, pp. 86-95.

    Article  Google Scholar 

  16. L. Ceschini, G. Minak, and A. Morri: Comp. Sci. Tech., 2009, vol. 69, pp. 1783-1789.

    Article  Google Scholar 

  17. M.A. Taha, N.A. El-Mahallawy, and A.M. El-Sabbagh: J. Mater. Proc. Tech., 2008, vol. 202, pp. 380-385.

    Article  Google Scholar 

  18. M. Vedani, F. D’Errico, and E. Gariboldi: Comp. Sci. Tech., 2006, vol. 66, pp. 343-349.

    Article  Google Scholar 

  19. P. Cavaliere: Composites Part A, 2004, vol. 35, pp. 619-629.

    Article  Google Scholar 

  20. H. Li, H. Wang, M. Zeng, X. Liang, and H. Liu: Comp. Sci. Tech., 2011, vol. 71, pp. 925-930.

    Article  Google Scholar 

  21. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and B.R. Barker: Metall. Tran. A, 1984, vol. 15, pp. 1883-1892.

    Article  Google Scholar 

  22. P. Wanjara, M. Jahazi, H. Monajati, and S. Yue: Mater. Sci. Eng. A, 2005, vol. 396, pp. 50-60.

    Article  Google Scholar 

  23. R. Ebrahimi and A. Najafizadeh: J. Mater. Proc. Technol., 2004, vol. 152, pp. 136-143.

    Article  Google Scholar 

  24. Y.V.R.K. Prasad and S. Sasidhara: Hot Working Guide, ASM Int’l, OH. 1997, pp. 3-6.

    Google Scholar 

  25. A. Contreras: J. Colloid Interface Sci., 2007, vol. 311, pp. 159-170.

    Article  Google Scholar 

  26. A.E. Karantzalis, A. Lekatou, E. Georgatis, V. Poulas, and H. Mavros: J. Mater. Eng. Perform., 2010, vol. 19, pp. 585-590.

    Article  Google Scholar 

  27. J.J. Lewandowski, C. Lui, and W.H. Hunt Jr.: Mater. Sci. Eng. A, 1989, vol. 107, pp. 241-255.

    Article  Google Scholar 

  28. B.Y. Zong and B. Derby: J. Mater. Sci., 1996, vol. 31, pp. 297-303.

    Article  Google Scholar 

  29. J.W. Martin: Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, Cambridge, UK, 1980, pp. 106-114.

    Google Scholar 

  30. A. El-Sabbagh, M. Soliman, M. Taha, and H. Palkowski: J. Mater. Proc. Tech., 2012, vol. 212, pp. 497-508.

    Article  Google Scholar 

  31. S. Amirkhanlou, M.R. Rezaei, B. Niroumand, and M.R. Toroghinejad: Mater. Des., 2011, vol. 32, pp. 2085-2090.

    Article  Google Scholar 

  32. J.W. Martin: Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, Cambridge, UK, 1980, pp. 79-88.

    Google Scholar 

  33. Y.V.R.K. Prasad and S. Sasidhara: Hot Working Guide, ASM International, Columbus OH, 1997, pp. 41–43.

    Google Scholar 

  34. C.S. Ramesh, R. Keshavamurthy, P.G. Koppad, and K.T. Kashyap: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 53-58.

    Article  Google Scholar 

  35. Y.C. You, J.S. Jeon, and H.I. Lee: Comp. Sci. Tech., 1997, vol. 57, pp. 651-654.

    Article  Google Scholar 

  36. B.L. Xiao, J.Z. Fan, X.F. Tian, W.Y. Zhang, and L.K. Shi: J. Mater. Sci., 2005, vol. 40, pp. 5757-5762.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Hyeon Kim.

Additional information

Manuscript submitted June 11, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SH., Cho, YH. & Lee, JM. Particle Distribution and Hot Workability of In Situ Synthesized Al-TiCp Composite. Metall Mater Trans A 45, 2873–2884 (2014). https://doi.org/10.1007/s11661-014-2224-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2224-2

Keywords

Navigation