Skip to main content
Log in

Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener–Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.R. Davis, Davis & Associates: ASM Specialty Handbook - Carbon and Alloy Steels, ASM International, Metals Park, OH, 1996.

    Google Scholar 

  2. W.D. Klopp: Aerospace Structural Metals Handbook, E 9310 (Code 1209), Purdue Research Foundation, West Lafayette, 1999.

  3. U.J. De Souza and M.F. Amateau: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 183–93.

    Article  Google Scholar 

  4. R. Song, D. Ponge, D. Raabe, J. G. Speer, and D. K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441 (1), pp. 1–17.

    Article  Google Scholar 

  5. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45 (2), pp. 103–89.

    Article  Google Scholar 

  6. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47 (2), pp. 579–83.

    Article  Google Scholar 

  7. K. Muszka, L. Madej, and J. Majta: Mater. Sci. Eng. A, 2013, vol. 574, pp. 68–74.

    Article  Google Scholar 

  8. Z. Hegedüs, J. Gubicza, M. Kawasaki, N. Q. Chinh, J. L. Lábár, and T. G. Langdon: J. Mater. Sci., 2013, vol. 48, pp. 4637–45.

    Article  Google Scholar 

  9. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon: Acta Mater., 1998, vol. 46 (9), pp. 3317–31.

    Article  Google Scholar 

  10. R. Z. Valiev and T. G. Langdon: Prog. Mater. Sci., 2006, vol. 51 (7), pp. 881–981.

    Article  Google Scholar 

  11. B. Cherukuri, T. S. Nedkova, and R. Srinivasan: Mater. Sci. Eng. A, 2005, vol. 410, pp. 394–97.

    Article  Google Scholar 

  12. A. K. Padap, G. P. Chaudhari, S. K. Nath, and V. Pancholi: Mater. Sci. Eng. A, 2009, vol. 527 (1), pp. 110–17.

    Article  Google Scholar 

  13. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida: CIRP AnnalsManuf. Tech., 2008, vol. 57, pp. 716–35.

    Article  Google Scholar 

  14. Y. Estrin and A. Vinogradov: Acta Mater., 2013, vol. 61, pp. 782–817.

    Article  Google Scholar 

  15. S. F. Medina and C. A. Hernandez: Acta Mater., 1996, vol. 44 (1), pp. 165–71.

    Article  Google Scholar 

  16. I. N. Kunitskaya, Ya. I. Spektor, and V. E. Olshanetskii: Met. Sci. Heat Treat., 2012, vol. 53 (9–10), pp. 498–502.

    Article  Google Scholar 

  17. G.F. Vander Voort: Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International, Materials Park, OH, 1991, pp. 466.

  18. G. Glover and C. M. Sellars: Metall. Trans., 1973, vol. 4 (3), pp. 765–75.

    Article  Google Scholar 

  19. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett (1997) Mater. Sci. Eng. A, vol. 238 (2), pp. 219–74.

    Article  Google Scholar 

  20. D. Snyder, E. Y. Chen, C. C. Chen, and S. Tin: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 479–93.

    Article  Google Scholar 

  21. N. Tsuji, Y. Matsubara, and Y. Saito: Scripta Mater., 1997, vol. 37, pp. 477–84.

    Article  Google Scholar 

  22. S.V.S. Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo: Scripta Mater., 2005, vol. 53, pp. 763–68.

    Article  Google Scholar 

  23. J. Baczynski and J.J. Jonas: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 447–62.

    Article  Google Scholar 

  24. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu: Acta Mater., 2002, vol. 50, pp. 4603–16.

    Article  Google Scholar 

  25. F.J. Humphreys and M. Hatherly (1995) Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Amsterdam.

    Google Scholar 

  26. P. Cotterill and P.R. Mould (1976) Recrystallization and Grain Growth in Metals, Halsted Press, New York.

    Google Scholar 

  27. D.S. Weaver and S.L. Semiatin: Scripta Mater., 2007, vol. 57, pp. 1044–47.

    Article  Google Scholar 

  28. S.L. Semiatin, D.S. Weaver, P. N. Fagin, M. G. Glavicic, R. L. Goetz, N. D. Frey, R. C. Kramb, and M. M. Antony: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 679–93.

    Article  Google Scholar 

  29. M. Jackson, R. Dashwood, L. Christodoulou, and H. Flower: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1317–27.

    Article  Google Scholar 

  30. Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.-J. Fecht: Acta Mater., 2003, vol. 51, pp. 5555–70.

    Article  Google Scholar 

  31. V.G. Gavriljuk (2003) J. Mater. Sci. Eng. A 345:81-89.

    Article  Google Scholar 

  32. H. Shen, Z. Li, B. Günther, A.V. Korznikov, and R.Z. Valiev: Nanostruct. Mater., 1995, vol. 6, pp. 385–88.

    Article  Google Scholar 

  33. A.V. Korznikov, O. Dimitrov, G.F. Korznikova, J.P. Dallas, A. Quivy, R.Z. Valiev and A. Mukherjee: Nanostruct. Mater., 1999, vol. 11 (1), pp. 17–23.

    Article  Google Scholar 

  34. G. Shen, J. Rollins, and D. Furrer: Superalloys 1996, R.D. Kissinger, D.J Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds., TMS, Warrendale, PA, 1996, pp. 613–20.

  35. S.A. Transvalor: FORGE 2011 Recrystallization During Metal Forming Operation, Transvalor S.A., Mougins, 2003.

  36. C. Murgau, R. Pederson, and L.E. Lindgren: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, 055006 (23pp).

Download references

Acknowledgments

The authors would like to acknowledge financial support provided by Army Aviation Technology Directorate STTR Phase I and II Contract# W911W6-11-C-0055 and W911W6-10-C-0063 managed by Clay Ames.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sammy Tin.

Additional information

Manuscript submitted August 30, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozmel, T., Chen, E.Y., Chen, C.C. et al. Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel. Metall Mater Trans A 45, 2590–2600 (2014). https://doi.org/10.1007/s11661-014-2212-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2212-6

Keywords

Navigation