Skip to main content
Log in

Dynamic Simulation of the Thermal Decomposition of Pyrite Under Vacuum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The ultrasoft pseudopotential plane wave method is applied to dynamic simulation of the thermal decomposition mechanism of FeS2 under vacuum. The FeS2 (100), (111), and (210) surface relaxation and the geometric and electronic structure of the reactants and products are calculated. The results indicate that FeS2 (100) is the most preferred surface to dissociate and also the most common cleavage surface. The thermal decomposition mechanism of FeS2 is explained by dynamic simulation on a micro stratum: in general, the S-Fe bond gradually elongated until it fractured, the S-S bond strengthened gradually, the S-Fe bond was cleaved to form S, the force is relatively weaker between different layers, and thermal decomposition occurred easily between the layers. Simultaneously, the intermediate products, such as Fe x S y , were formed. Evidence of Fe pyrolysis into Fe metal was not found, and the intermediate products decomposed further. The contributions of the p and d orbitals of Fe increased, whereas that of the s orbital decreased. The contributions of the s and p orbitals of S decreased. The results obtained from FeS2 thermal decomposition experiments under vacuum and differential thermal analysis—thermogravimetry are consistent with the results of calculation and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Craig, F. Vokes, and T. Solberg: Miner. Deposita, 1998, vol. 34, pp. 82-101.

    Article  Google Scholar 

  2. Z. Lin and U. Quvarfort: Waste Manag, 1996, vol. 16, pp. 671-81.

    Article  Google Scholar 

  3. A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch: Sol. Energy Mater. Sol. Cells, 1993, vol. 29, pp. 289-370.

    Article  Google Scholar 

  4. G. Chatzitheodorou, S. Fiechter, R. Könenkamp, M. Kunst, W. Jaegermann, and H. Tributsch: Mater. Res. Bull., 1986, vol. 21, pp. 1481-87.

    Article  Google Scholar 

  5. A.S. Barnard and S.P. Russo: J. Phys. Chem. C, 2007, vol. 111, pp. 11742-46.

    Article  Google Scholar 

  6. J.B. Hiskey, P.P. Phule, and M.D. Pritzker: Metall. Trans. B, 1987, vol. 18, pp. 641-47.

    Article  Google Scholar 

  7. J.B. Hiskey and M.D. Pritzker: J. Appl. Electrochem., 1988, vol. 18, pp. 484-90.

    Article  Google Scholar 

  8. G. Srinivasan and M.S. Seehra: Fuel, 1982, vol. 61, pp. 1249-53.

    Article  Google Scholar 

  9. G. Srinivasan and M.S. Seehra: Fuel, 1983, vol. 62, pp. 792-94.

    Article  Google Scholar 

  10. P. Rochette, J. Gattacceca, V. Chevrier, P.E. Mathe, M. Menvielle, P. Brauer, P. Dussouliez, C. Fabron, L. Hood, P.A. Jensen, B. Langlais, L.A. Larsen, M.B. Madsen, J. Merayo, G. Mussmann, H. Newsom, E. Petrovfky, F. Primdahl, G. Saracco, F. Vadeboin, and S. Vennerstrom: Astrobiology, 2006, vol. 6, pp. 423-36.

    Article  Google Scholar 

  11. B. Fegley Jr, K. Lodders, A.H. Treiman, and G. Klingelhöfer: Icarus, 1995, vol. 115, pp. 159-80.

    Article  Google Scholar 

  12. M.N. Lehmann, S. O’Leary, and J.G. Dunn: Miner. Eng., 2000, vol. 13, pp. 1-18.

    Article  Google Scholar 

  13. Y. Hong and B. Fegley: Ber. Bunsenges. Phys. Chem., 1997, vol. 101, pp. 1870-81.

    Article  Google Scholar 

  14. F.R.A. Jorgensen and F.J. Moyle: J. Therm. Anal. Calorim., 1982, vol. 25, pp. 473-85.

    Article  Google Scholar 

  15. G.-M. Schwab and J. Philinis: J. Am. Chem. Soc., 1947, vol. 69, pp. 2588-96.

    Article  Google Scholar 

  16. J. Lambert, G. Simkovich, and P. Walker: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 385-96.

    Article  Google Scholar 

  17. G.L. Hu, K. Dam-Johansen, W. Stig, and J.P. Hansen: Prog. Energy Combust. Sci., 2006, vol. 32, pp. 295-314.

    Article  Google Scholar 

  18. J.P. Hansen, L.S. Jensen, S. Wedel, and K. Dam-Johansen: Ind. Eng. Chem. Res., 2003, vol. 42, pp. 4290-95.

    Article  Google Scholar 

  19. Y. Pelovski, and V. Petkova: J. Therm. Anal. Calorim., 1999, vol. 56, pp. 95-99.

    Article  Google Scholar 

  20. H. Hu, Q. Chen, Z. Yin, P. Zhang, J. Zou, and H. Che: Thermochim. Acta, 2002, vol. 389, pp. 79-83.

    Article  Google Scholar 

  21. H. Hu, Q. Chen, Z. Yin, and P. Zhang: Thermochim. Acta, 2003, vol. 398, pp. 233-40.

    Article  Google Scholar 

  22. C. Almeida and B.F. Giannetti: J. Solid State Electrochem., 2002, vol. 6, pp. 111-18.

    Article  Google Scholar 

  23. A.S. Bommannavar and P.A. Montano: Fuel, 1982, vol. 61, pp. 523-28.

    Article  Google Scholar 

  24. P.A. Montano, A.S. Bommannavar, and V. Shah: Fuel, 1981, vol. 60, pp. 703-11.

    Article  Google Scholar 

  25. H.J. Hurst, J.H. Levy, and S.S.J. Warne: React. Solids, 1990, vol. 8, pp. 159-68.

    Article  Google Scholar 

  26. L. Wang, Y. Pan, J. Li, and H. Qin: Sci. China Ser. D Earth Sci., 2008, vol. 51, pp. 1144-53.

    Article  Google Scholar 

  27. A.W. Coats and N.F.H. Bright: Can. J. Chem., 1966, vol. 44, pp. 1191-95.

    Article  Google Scholar 

  28. Z.Y. Li, W. He, and J.L. Yang: Prog. Chem., 2005, vol. 17, pp. 192-202.

    Google Scholar 

  29. H.W. Yang and D.P. Tao: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 945-49.

    Article  Google Scholar 

  30. D.P. Tao: Fluid Phase Equilib., 2006, vol. 250, pp. 83-92.

    Article  Google Scholar 

  31. D.P. Tao: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3495-97.

    Article  Google Scholar 

  32. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: J. Phys. Condens. Matter, 2002, vol. 14, pp. 2717-44.

    Article  Google Scholar 

  33. P. Hohenberg and W. Kohn: Phys. Rev., 1964, vol. 136, pp. 864-71.

    Article  Google Scholar 

  34. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopulos: Rev. Mod. Phys., 1992, vol. 62, pp. 1045-97.

    Article  Google Scholar 

  35. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne: Zeitschrift fuer Kristallographie, 2005, vol. 220, pp. 567-70.

    Google Scholar 

  36. G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758-1775.

    Article  Google Scholar 

  37. J.P. Perdew and Y. Wang: Phys. Rev. B Condens. Matter Mater. Phys., 1986, vol. 33, pp. 8800-02.

    Article  Google Scholar 

  38. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C.F. Fiolhais: Phys. Rev. B, 1992, vol. 46, pp. 6671–87.

    Article  Google Scholar 

  39. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865-68.

    Article  Google Scholar 

  40. N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, and J. Andzelm: Comput. Mater. Sci., 2003, vol. 28, pp. 250-58.

    Article  Google Scholar 

  41. M. Rieder, J.C. Crelling, O. Šustai, M. Drábek, Z. Weiss, and M. Klementová: Int. J. Coal Geol., 2007, vol. 71, pp. 115-21.

    Article  Google Scholar 

  42. A.N. Mariano and R.M. Beger: Am. Mineral., 1971, vol. 56, pp. 1867-69.

    Google Scholar 

  43. A. Hung, J. Muscat, I. Yarovsky, and S.P. Russo: Surf. Sci., 2002, vol. 513, pp. 511-24.

    Article  Google Scholar 

  44. A. Hung, J. Muscat, I. Yarovsky, and S.P. Russo: Surf. Sci., 2002, vol. 520, pp. 111-19.

    Article  Google Scholar 

  45. S. Ndlovu and A.J. Monhemius: Hydrometallurgy, 2005, vol. 78, pp. 187-97.

    Article  Google Scholar 

  46. A.R. Elsetinow, J.M. Guevremont, D.R. Strongin, M.A.A. Schoonen, and M. Strongin: Am. Mineral., 2000, vol. 85, pp. 623-26.

    Google Scholar 

  47. K.M. Rosso, U. Becker, and M.F. Hochella: Am. Mineral., 1999, vol. 84, pp. 1549-61.

    Google Scholar 

  48. J.M. Guevremont, A.R. Elsetinow, D.R. Strongin, J. Bebie, and M.A.A. Schoonen: Am. Mineral., 1998, vol. 83, pp. 1353-56.

    Google Scholar 

  49. N.H. de Leeuw, S.C. Parker, H.M. Sithole, and P.E. Ngoepe: J. Phys. Chem. B 2000, vol. 104, pp. 7969-76.

    Article  Google Scholar 

  50. H.C. Andersen: J. Chem. Phys., 1980, vol. 72, pp. 2384-93.

    Article  Google Scholar 

  51. T.A. Arias, M.C. Payne, and J.D. Joannopoulos: Phys. Rev. Lett., 1992 69, pp. 1077-80.

    Article  Google Scholar 

  52. D. Alfè: Comput. Phys. Commun., 1999, vol., 118, pp. 31–33.

  53. Y.N. Dai, P.Y. Wang, B. Yang, Q.X. Li, G.Y. Wu, B.Z. Yang, Y.C. Liu, W.H. Ma, D.C. Liu, K.H. Wu, B.Q. Xu, X.K. Zhou, H.W. Li, Y.C. Yao, and J. Yan: Chinese Patent: 2005-10-18.

Download references

Acknowledgments

This research project was supported by the Key Program of the National Natural Science Foundation of China (u0837602 & KKGE201121001), Natural Science Foundation of Yunnan Province Education Department (2012J085), Excellent Doctoral Dissertation Foundation of Kunming University of Science and Technology (41118011), and the Analysis and Testing Foundation of Kunming University of Science and Technology (2011464), and the authors are grateful to Yong Deng and Yan Li (The National Engineering Laboratory for Vacuum Metallurgy) and Yuanyuan Zhou (Honghe University) for their contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuming Wen.

Additional information

Manuscript submitted February 5, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, J., Wen, S., Chen, X. et al. Dynamic Simulation of the Thermal Decomposition of Pyrite Under Vacuum. Metall Mater Trans A 45, 2445–2452 (2014). https://doi.org/10.1007/s11661-014-2206-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2206-4

Keywords

Navigation