Skip to main content
Log in

Ab initio Computer Simulation of the Energy Parameters and the Magnetic Effects in Ternary Fe–X–C (X = Si, P, S, Cr, Mn) Systems

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The equilibrium structure and the properties of ternary Fe–X–C (X = Si, P, S, Cr, Mn) systems are studied by ab initio simulation using the WIEN2k software package. The calculations are performed by the full-potential linearized augmented plane wave method (FLAPW) with allowance for the generalized gradient approximation (PBE-GGA). These methods are most accurate in terms of the density functional theory. The magnetic structure of Fe–X–C alloys and the interaction between carbon and impurity atoms at various distances are analyzed. Repulsion is detected between impurity silicon, phosphorus, and chromium atoms and carbon atoms in all three coordination shells, which significantly increases the dissolution energies of these impurities. Analogous repulsion for the first two coordination shells is also observed for the interaction of sulfur and carbon atoms, and weak attraction between these atoms appears in the third coordination shell. The interaction of carbon with manganese is characterized by attraction in the first two coordination shells, and the dissolution energies of both manganese and carbon decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. R. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles (Cengage Learning, 2008).

    Google Scholar 

  2. H. Saitoh, K. Ushioda, N. Yoshinaga, and W. Yamada, “Influence of substitutional atoms on the solubility limit of carbon in bcc iron,” Scr. Mater. 65 (10), 887–890 (2011).

    Article  Google Scholar 

  3. R. F. Zhu, Y. P. Lu, and T. Wei, “C–Mn segregation and its effect on phase transformation and deformation in Fe–Mn–C alloys,” Sci. China, Ser. E 40 (6), 567–573 (1997).

    Google Scholar 

  4. S. Garruchet and M. Perez, “Modelling the carbon snoek peak in ferrite: coupling molecular dynamics and kinetic Monte Carlo simulations,” Comput. Mater. Sci. 43, 286–292 (2008).

    Article  Google Scholar 

  5. S. Suzuki, S. Tanii, K. Abiko, and H. Kimura, “Site competition between sulfur and carbon at grain boundaries and their effects on the grain boundary cohesion in iron,” Metall. Trans. A 18 (6), 1109–1115 (1991).

    Article  Google Scholar 

  6. K. Schwarz, P. Blaha, and G. K. H. Madsen, “Electronic structure calculations of solids using the WIEN2k package for material sciences,” Comp. Phys. Comm. 147, 71–76 (2002).

    Article  Google Scholar 

  7. Ya. M. Ridnyi, A. A. Mirzoev, and D. A. Mirzaev, “Determining the optimal modeling parameters for maximum precise calculations of energy in bcc iron,” Vestn. YuUrGU, Ser. Mat. Mekh. Fiz. 8 (4), 63–69 (2016).

    Google Scholar 

  8. Ya. M. Ridnyi, A. A. Mirzoev, and D. A. Mirzaev, “Silicon impurity in bcc iron: ab initio simulation of properties and energy parameters,” Vestn. YuUrGU, Ser. Mat. Mekh. Fiz. 17 (3), 6–9 (2017).

    Google Scholar 

  9. C. Kittel and P. McEuen, in Introduction to Solid State Physics (Wiley, New York, 1996), Vol. 8, pp. 323–324.

    Google Scholar 

  10. P. Liu, W. Xing, X. Cheng, et al., “Effects of dilute substitutional solutes on interstitial carbon in α-Fe: interactions and associated carbon diffusion from first-principles calculations,” Phys. Rev. B 90 (2), 024103 (2014).

    Article  Google Scholar 

  11. A. A. Mirzoev, M. M. Yalalov, and D. A. Mirzaev, “Energy of mixing and magnetic state of components of Fe–Mn alloys: a first-principles calculation for the ground state,” Phys. Met. Metallog. 101 (4), 341–348 (2006).

    Article  Google Scholar 

  12. N. I. Medvedeva, D. C. Van Aken, and J. E. Medvedeva, “The effect of carbon distribution on the manganese magnetic moment in bcc Fe–Mn alloy,” J. Physics: Cond. Matter. 23 (32), 326003 (2011).

    Google Scholar 

  13. E. Schlirmann, T. Schmidt, and F. Tillmann, “Carburisation equilibria of alpha-iron with methanehydrogen mixtures in the 600–800°C range and their,” Giesserei-Forschung 19 (1), 35–41 (1967).

    Google Scholar 

  14. D. E. Jiang and E. A. Carter, “Carbon dissolution and diffusion in ferrite and austenite from first principles,” Physical Review B 67 (21), 214103 (2003).

    Article  Google Scholar 

  15. N. Hatcher, G. K. H. Madsen, and R. Drautz, “DFT-based tight-binding modeling of iron–carbon,” Phys. Rev. B 86 (15), 155115 (2012).

    Article  Google Scholar 

  16. W.-S. Ko, N. J. Kim, and B.-J. Lee, “Atomistic modeling of an impurity element and a metal–impurity system: pure P and Fe–P system,” J. Physics: Cond. Matter. 24 (22), 225002 (2012).

    Google Scholar 

  17. O. I. Gorbatov, S. V. Okatov, Yu. N. Gornostyrev, P. A. Korzhavyi, and V. Ruban, “Effect of magnetism on the solubility of 3d elements in bcc iron: results of first-principle investigations,” Phys. Met. Metallog. 114 (8), 642–653 (2013).

    Article  Google Scholar 

  18. P. Olsson, C. Domain, and J. Wallenius, “Ab initio study of Cr interactions with point defects in bcc Fe,” Phys. Rev. B 75, 014110 (2007).

    Article  Google Scholar 

  19. R. Soulairol, C. C. Fu, and C. C. Barreteau, “Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods,” J. Physics: Cond. Matter. 22 (29), 295502 (2010).

    Google Scholar 

  20. M. E. Schlesinger and Q. Xiang, “Enthalpies of mixing in Fe–C–Si melts,” J. Alloys Compd. 321 (2), 242–247 (2001).

    Article  Google Scholar 

  21. A. Bakaev, D. Terentyev, G. Bonny, T. P. C. Klaver, P. Olsson, and D. V. Neck, “Interaction of minor alloying elements of high-Cr ferritic steels with lattice defects: an ab initio study,” J. Nucl. Mater. 444 (1–3), 237–246 (2014).

    Article  Google Scholar 

  22. N. Sandberg, K. O. E. Henriksson, and J. Wallenius, “Carbon impurity dissolution and migration in bcc Fe–Cr: first-principles calculations,” Phys. Rev. B 78 (9), 094110 (2008).

    Article  Google Scholar 

  23. S. Sampath, R. Rementeria, X. Huang, J. D. Poplawsky, C. Garcia-Mateo, F. G. Caballero, and R. Janisch, “The role of silicon, vacancies, and strain in carbon distribution in low temperature bainite,” J. Alloys Compd. 673, 289–294 (2016).

    Article  Google Scholar 

  24. D. Simonovic, C. K. Ande, A. I. Duff, F. Syahputra, and M. H. F. Sluiter, “Diffusion of carbon in bcc Fe in the presence of Si,” Phys. Rev. B 81, 054116 (2010).

    Article  Google Scholar 

  25. S. Suzuki, M. Obata, K. Abiko, and H. Kimura, “Effect of carbon on the grain boundary segregation of phosphorus in α-iron,” Scr. Metall. 17 (11), 1325–1328 (1983).

    Article  Google Scholar 

  26. V. Massardier, J. Merlin, E. L. Patezour, and M. Soler, “Mn–C interaction in Fe–C–Mn steels: study by thermoelectric power and internal friction,” Metall. and Mat. Trans. A 36 (7), 1745–1755 (2005).

    Article  Google Scholar 

  27. H. Abe, T. Suzuki, and S. Okada, “Decomposition of Mn–C dipoles during quench-ageing in low-carbon aluminium-killed steels,” Trans. Jap. Inst. Metal. 25 (4), 215–225 (1984).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Higher Education and Science of Russia (task no. 3.3838.2017/VU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mirzoev.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzoev, A.A., Ridnyi, Y.M. & Verkhovykh, A.V. Ab initio Computer Simulation of the Energy Parameters and the Magnetic Effects in Ternary Fe–X–C (X = Si, P, S, Cr, Mn) Systems. Russ. Metall. 2019, 168–172 (2019). https://doi.org/10.1134/S0036029519020174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519020174

Keywords:

Navigation