Skip to main content
Log in

Creep–Environment Interactions in Dwell-Fatigue Crack Growth of Nickel Based Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A multi-scale, mechanistic model is developed to describe and predict the dwell-fatigue crack growth rate in the P/M disk superalloy, ME3, as a function of creep–environment interactions. In this model, the time-dependent cracking mechanisms involve grain boundary sliding and dynamic embrittlement, which are identified by the grain boundary activation energy, as well as, the slip/grain boundary interactions in both air and vacuum. Modeling of the damage events is achieved by adapting a cohesive zone (CZ) approach which considers the deformation behavior of the grain boundary element at the crack tip. The deformation response of this element is controlled by the surrounding continuum in both far field (internal state variable model) and near field (crystal plasticity model) regions and the intrinsic grain boundary viscosity which defines the mobility of the element by scaling up the motion of dislocations into a mesoscopic scale. This intergranular cracking process is characterized by the rate at which the grain boundary sliding reaches a critical displacement. A damage criterion is introduced by considering the grain boundary mobility limit in the tangential direction leading to strain incompatibility and failure. Results of simulated intergranular crack growth rate using the CZ model are generated for temperatures ranging from 923 K to 1073 K (650 °C to 800 °C), in both air and vacuum. These results are compared with those experimentally obtained and analysis of the model sensitivity to loading conditions, particularly temperature and oxygen partial pressure, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Ghonem, T. Nicholas and A. Pineau: Fatigue Fract. Eng. Mater. Struct., 1993, vol. 5, pp. 565–76.

    Article  Google Scholar 

  2. H. Ghonem, T. Nicholas and A. Pineau: Fatigue Fract. Eng. Mater. Struct., 1993, vol. 16, pp. 577–90.

    Article  Google Scholar 

  3. H. Ghonem and D. Zheng: Metall. Trans. A, 1992, vol. 23A, pp. 3067–72.

    Article  Google Scholar 

  4. D.G. Leo Prakash, M.J. Walsh, D. Maclachlan and A.M. Korsunsky (2009) Int. J. Fatigue 31: 1966–77.

    Article  Google Scholar 

  5. Y.L. Lu, L.J. Chen, P.K. Liaw, G.Y. Wang, C.R. Brooks, S.A. Thompson, J.W. Blust, P.F. Browning, A.K. Bhattacharya, J.M. Aurrecoechea and D.L. Klarstrom: Mater. Sci. Eng. A, 2006, vol. 429, pp. 1–10.

    Article  Google Scholar 

  6. S.P. Lynch, T.C. Radtke, B.J. Wicks and R.T. Byrnes: Fatigue Fract. Eng. Mater. Struct., 1994, vol. 17, pp. 297–311.

    Article  Google Scholar 

  7. S. Dalby and J. Tong: J. Mater. Sci., 2005, vol. 40, pp. 1217–28.

    Article  Google Scholar 

  8. H. Yang, R. Bao, J. Zhang, L. Peng and B. Fei: Eng. Fail. Anal., 2011, vol. 18, pp. 1058–66.

    Article  Google Scholar 

  9. R.P. Wei and Z. Huang: Mater. Sci. Eng. A, 2002, vol. 336, pp. 209–14.

    Article  Google Scholar 

  10. A.C.F. Cocks and M.F. Ashby: Prog. Mater. Sci., 1982, vol. 27, pp. 189–244.

    Article  Google Scholar 

  11. G.L. Dunlop and J.O. Nilsson: Mater. Sci. Eng., 1980, vol. 42, pp. 273–80.

    Article  Google Scholar 

  12. C. Gandhi: in Flow and Fracture at Elevated Temperatures, R. Raj, ed., American Society for Metals, Materials Park, OH, 1985, pp. 83–119.

  13. A. Pineau: in Flow and Fracture at Elevated Temperatures, R. Raj, ed., American Society for Metals, Materials Park, OH, 1985, pp. 317–47.

  14. R. Raj: in Flow and Fracture at Elevated Temperatures, R. Raj, ed., American Society for Metals, Materials Park, OH, 1985, pp. 215–49.

  15. K. Shiozawa and J.R. Weertman: Acta Metall., 1983, vol. 31, pp. 993–1004.

    Article  Google Scholar 

  16. A. Needleman and J.R. Rice: Acta Metall., 1980, vol. 28, pp. 1315–32.

    Article  Google Scholar 

  17. W.D. Nix and J.C. Gibeling: in Flow and Fracture at Elevated Temperatures, R. Raj, ed., American Society for Metals, Materials Park, OH, 1985, pp. 1–63.

  18. J. Dahal: Master’s Thesis, University of Rhode Island, 2011.

  19. J. Dahal, K. Maciejewski and H. Ghonem: Int. J. Fatigue, 2013, vol. 57, pp. 93–102.

    Article  Google Scholar 

  20. A.D. Sheikh-Ali: Scripta Metall. Mater., 1995, vol. 33, pp. 795–801.

    Article  Google Scholar 

  21. H. Yoshida, K. Yokoyama, N.Shibata, Y. Ikuhara and T. Sakuma: Acta Metall., 2004, vol. 52, pp. 2349–57.

    Google Scholar 

  22. G.R. Kegg, C.A.P. Horton and J.M. Silcock: Philos. Mag., 1973, vol. 27, pp. 1041–55.

    Article  Google Scholar 

  23. R.Z. Valiev, V.G. Khairullin and A.D. Sheikh-Ali: Russ. Physics J., 1991, vol. 34, pp. 253–61.

    Google Scholar 

  24. K. Reading and D. Smith: Philos. Mag. A, 1985, vol. 51, pp. 71–78.

    Article  Google Scholar 

  25. A. Pineau and S.D. Antolovich: Eng. Fail. Anal., 2009, vol. 16, pp. 2668–97.

    Article  Google Scholar 

  26. E. Andrieu, R. Molins, H. Ghonem and A. Pineau: Mater. Sci. Eng. A, 1992, vol. 154, pp. 21–28.

    Article  Google Scholar 

  27. S. Kirchhoff: Master’s Thesis, University of Rhode Island, 2008.

  28. U. Krupp, W. Kane, J. Pfaendtner, X. Liu, C. Laird and C. McMahon Jr.: Mater. Research, 2004, vol. 7, pp. 35–41.

    Article  Google Scholar 

  29. R.W. Hayes: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2596–2606.

    Article  Google Scholar 

  30. U. Krupp, W.M. Kane, C. Laird and C.J. McMahon: Mater. Sci. Eng. A, 2004, vol. 387, pp. 409–13.

    Article  Google Scholar 

  31. D. Bika and C.J. McMahon Jr.: Acta Materialia, 1995, vol. 43, pp. 1909–16.

    Article  Google Scholar 

  32. W.Z. Zhuang and N.S. Swansson: Thermo-Mechanical Fatigue Life Prediction: A Critical Review, Submitted to Airframes and Engines Division, Aeronautical and Maritime Research Division, internet source: DSTO-TR-0609.

  33. C.M. Branco, A.S. Brito, and J. Byrne: Life Extension Methodology Based on Creep-Fatigue Models, Presented at the RTOAVT Workshop on Qualification of Life Extension Schemes for Engine Components, Corfu, Greece, October 1998.

  34. Y. Sun, K. Maciejewski and H. Ghonem: Int. J. Damage Mechanics, 2013, vol. 22, pp. 905–23.

    Article  Google Scholar 

  35. O. Nguyen, E.A. Repetto and M. Ortiz: Int. J. Fracture, 2001, vol. 110, pp. 351–69.

    Article  Google Scholar 

  36. K.L. Roe, T. Siegmund: Eng. Fracture Mech., 2003, vol. 70, pp. 209–32.

    Article  Google Scholar 

  37. F.L. Carranza and R.B. Haber: J. Mech. Physics Solids, 1999, vol. 47, pp. 27–58.

    Article  Google Scholar 

  38. J. Dahal, K. Maciejewski, and H. Ghonem: in Grain Boundary Deformation and Damage Mechanisms in Dwell Fatigue Crack Growth in Turbine Disk Superalloy ME3, Superalloys 2012, Seven Springs Mountain Resort, Champion, Pennsylvania, September 9–13, 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman, eds., The Minerals, Metals and Materials Society, Warrendale, PA, 2012, pp. 149–58.

  39. J. Li: MRS Bulletin, 2007, vol. 32, pp. 151–59.

    Article  Google Scholar 

  40. M.M. Hall Jr.: Proceedings of the International Symposium on Plant Aging and Life Prediction of Corrodible Structures, Sapporo, Japan, May, 1995, Paper A-I-09.

  41. M.J. Starink and P.A.S. Reed (2008) Mater. Sci. Eng. A 491: 279–89.

    Article  Google Scholar 

  42. G. Venkataraman, Y.W. Chung and T. Mura: Acta Metall., 1991, vol. 39, pp. 2621–29.

    Article  Google Scholar 

  43. K. Maciejewski: PhD Thesis, University of Rhode Island, 2013.

  44. F.W. Crossman and M.F. Ashby: Acta Metall., 1975, vol. 23, pp. 425–40.

    Article  Google Scholar 

  45. T. Kê: Phys. Rev., 1947, vol. 71, pp. 533–46.

    Article  Google Scholar 

  46. F. Cosandey: J. De Phys., 1988, vol. C5, pp. 581–86.

    Google Scholar 

  47. E. Arzt, M.F. Ashby and R.A. Verrall: Acta Metall., 1983, vol. 31, pp. 1977–89.

    Article  Google Scholar 

  48. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, U.K., 1982.

    Google Scholar 

  49. Abaqus Version 6.8, Dassault Systèmes Simulia Corp, Providence, RI, 2008.

  50. M. Gell and G.R. Leverent: Fatigue at Elevated Temperature, 1973, pp. 37–66.

  51. D. Kuhlmaan-Wilsdorf: in Low-Energy Dislocation Structures II, 2nd International Conference on Low Energy Dislocation Structures, M.N. Bassim, W.A. Jesser, D. Kuhlmann-Wilsdorf, and G.J. Shiflet, eds., Materials Science and Engineering, 1989, pp. 1–41.

Download references

Acknowledgments

The authors acknowledge the support from the MAI (Metals Affordability Initiative) Program FA8650-08-2-5247, in collaboration with the Air Force Research Lab, Pratt & Whitney, GE Aviation, Georgia Institute of Technology and Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamouda Ghonem.

Additional information

Manuscript submitted May 7, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciejewski, K., Dahal, J., Sun, Y. et al. Creep–Environment Interactions in Dwell-Fatigue Crack Growth of Nickel Based Superalloys. Metall Mater Trans A 45, 2508–2521 (2014). https://doi.org/10.1007/s11661-014-2199-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2199-z

Keywords

Navigation