Skip to main content
Log in

The Effect of Cooling Rate from Solution on the Lattice Misfit During Isothermal Aging of a Ni-Base Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of lattice misfit in the polycrystalline nickel-base superalloy, RR1000, has been investigated using high resolution neutron diffraction at interrupted time intervals during an aging heat treatment. Samples were subjected to a super-solvus heat treatment followed by either a 100 or a 1 K min−1 cooling rate prior to aging. Irrespective of cooling rate, the lattice misfit remained unchanged at approximately 0.1 pct throughout the aging cycle, indicating the microstructure remained stable. Microstructural observations validated this result for samples cooled at 1 K min−1. However, for the faster, 100 K min−1, cooling rate, whilst the secondary γ′ remained unchanged, the tertiary γ′ showed significant coarsening. Simulated diffraction patterns were used to investigate the influence of volume fraction, particle size, and lattice parameter of individual γ′ distributions on the measured lattice misfit. The results obtained indicate that conventional methods of measuring lattice misfit will be dominated by the γ′ distribution with the highest volume fraction, and may therefore obscure subtle changes in the γ′ distributions with lower a volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. R.J. Mitchell, J.A. Lemsky, R. Ramanathan, H.Y. Li, K.M. Perkins, L.D. Connor, TMS Superalloys, Seven Springs, Pennsylvania, 2008.

    Google Scholar 

  3. L. Connor: Ph.D. Thesis, Department of Materials Science and Metallurgy, University of Cambridge, 2009

  4. S.K. Sondhi, B.F. Dyson, M. McLean, Acta Materialia, 52 (2004) 1761-1772.

    Article  Google Scholar 

  5. M.P. Jackson, R.C. Reed, Materials Science and Engineering A, 259 (1999) 85-97.

    Article  Google Scholar 

  6. J.J. Schirra, P.L. Reynolds: Superalloys, TMS, Warrendale, PA, 2004, pp. 341–50.

    Google Scholar 

  7. J. Lemsky: Assessment of NASA Dual Microstructure Heat Treatment Method Utilizing Ladish SupercoolerTM Cooling Technology, National Aeronautics and Space Administration (NASA), Washington, DC, 2005, p. 15. http://ntrs.nasa.gov/search.jsp.

  8. D.U. Furrer and H.-J. Fecht: Superalloys, TMS, Warrendale, PA, 2000, pp. 415–24.

    Google Scholar 

  9. D.M. Collins, B.D. Conduit, H.J. Stone, M.C. Hardy, G.J. Conduit, R.J. Mitchell, Acta Materialia, 61 (2013) 3378-3391.

    Article  Google Scholar 

  10. J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, Oxford, 2002.

    Google Scholar 

  11. P.W. Voorhees, Journal of Statistical Physics, 38 (1985) 231-252.

    Article  Google Scholar 

  12. L. Ratke, C. Beckermann, Acta Materialia, 49 (2001) 4041-4054.

    Article  Google Scholar 

  13. A.J. Ardell, Metallurgical Transactions A, 16A (1985) 2131-2165.

    Article  Google Scholar 

  14. J. Tiley, G.B. Viswanathan, J.Y. Hwang, A. Shiveley, R. Banerjee, Materials Science and Engineering: A, 528 (2010) 32-36.

    Article  Google Scholar 

  15. J. Li, R.P. Wahi, Acta Metallurgica et Materialia, 43 (1995) 507-517.

    Article  Google Scholar 

  16. R.J. Mitchell, M. Preuss, Metallurgical and Materials Transactions A, 38A (2007) 615-627.

    Article  Google Scholar 

  17. R.J. Mitchell, M. Preuss, M.C. Hardy, S. Tin, Materials Science and Engineering A, 423 (2006) 282-291.

    Article  Google Scholar 

  18. D.M. Collins, L. Yan, E.A. Marquis, L.D. Connor, J.J. Ciardiello, A.D. Evans, H.J. Stone, Acta Materialia, 61 (2013) 7791-7804.

    Article  Google Scholar 

  19. R.M. Ibberson, W.I.F. David, and K.S. Knight: ISIS Spallation Neutron & Muon Source, 1992, p. 24. http://www.isis.stfc.ac.uk/instruments/hrpd/documents/hrpd-documents4439.html.

  20. A.C. Larson and R.B. Von Dreele: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (1994).

  21. S. Ikeda, J.M. Carpenter, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 239 (1985) 536-544.

    Article  Google Scholar 

  22. Sundman B.: ThermoCalc User Guide, KTH Stockholm, 1993.

  23. ThermoTech Ltd.: TTNi6, TT Ni-based Superalloys Database, Surrey Technology Center, Guildford, 2003.

  24. H.J. Stone, T.M. Holden, R.C. Reed, Acta Materialia, 47 (1999) 4435-4448.

    Article  Google Scholar 

  25. S.J. Hessel, W. Voice, A.W. James, S.A. Blackham, C.J. Small, and M.R. Winstone: Patent Number EP0803585, 2000.

  26. CrystalMaker, Oxfordshire. www.crystalmaker.com. Accessed 8 Dec 2012.

  27. CrystalDiffract, Oxfordshire. www.crystalmaker.com/crystaldiffract/index.html. Accessed 8 Dec 2012.

  28. R.A. Ricks, A.J. Porter, R.C. Ecob, Acta Metallurgica, 31 (1983) 43-53.

    Article  Google Scholar 

  29. A. Hazotte, A. Racine, A. Denis, Journal de Physique IV, 6 (1996) 9.

    Google Scholar 

  30. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock, Metallurgical and Material Transactions A, 40 (2009) 1588-1603.

    Article  Google Scholar 

  31. D.M. Collins and H.J. Stone: Int. J. Plast., 2014, vol. 54, pp. 96–112.

Download references

Acknowledgments

Financial support from the EPSRC and Rolls-Royce plc. is acknowledged (DMC supported by a DTA studentship, HJS supported by the Rolls-Royce EPSRC Strategic Partnership—EP/H500375/1). The authors are grateful to M.C. Hardy and R.J. Mitchell (Rolls-Royce plc.) for their technical support during this work. The authors are additionally grateful for the allocation of experimental time on the HRPD instrument at the ISIS neutron spallation source (RB610489) and the technical support by R.M. Ibberson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Connor.

Additional information

Manuscript submitted July 17, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connor, L.D., Stone, H.J., Collins, D.M. et al. The Effect of Cooling Rate from Solution on the Lattice Misfit During Isothermal Aging of a Ni-Base Superalloy. Metall Mater Trans A 45, 2436–2444 (2014). https://doi.org/10.1007/s11661-014-2197-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2197-1

Keywords

Navigation