Skip to main content
Log in

Grain Refinement in Pure Aluminum Severely Deformed by Equal Channel Angular Extrusion via Extended Processing Routes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AA1060 pure aluminum billets were processed by eight passes of equal channel angular extrusion (ECAE) using 90 and 120 deg dies via processing routes characterized by an inter-pass billet rotation angle (χ) varying from 0 to 180 deg. The grain refinement efficiencies achieved in the different processing conditions were investigated by comparing misorientation and grain size in the deformed samples measured by electron back-scatter diffraction. The results reveal an overall decrease of grain refinement efficiency with an increase of χ for both dies. This trend corroborates the general observations in various face-centered cubic metals processed using a 120 deg die and can be satisfactorily explained by correlating the relative grain refinement efficiency to the relative significance of newly activated slip systems at pass-to-pass transitions. For ECAE with the 90 deg die, the route-dependency of grain refinement found in the AA1060 samples contradicts some of the observations in the literature, and the main discrepancies are located for routes with χ = 0 to 90 deg. Comparison of the present results with those of pure copper processed under similar conditions further reveals that these discrepancies could be mainly ascribed to differences in the characteristics of the materials, and that it is irrational to simply claim the route with χ = 0 or 90 deg as the optimal route without necessary experimental validations for a specific material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Route B was often designated as route B C (e.g., Ref. [4]) in the literature.

  2. The number of passes was, however, also reported to be 10 in Ref. [10] by the same group of authors, when the same set of EBSD data for the routes B 60 and B samples was presented.

  3. Although not shown here for the sake of space, the variation of the average misorientation with the processing route follows the same trend as that of the fraction of HABs for both die angles.

References

  1. V.M. Segal: Mater. Sci. Eng. A, 1995, vol. 197, pp. 157–64.

    Article  Google Scholar 

  2. V.M. Segal: Mater. Sci. Eng. A, 1999, vol. 271, pp. 322–33.

    Article  Google Scholar 

  3. L. Dupuy and E.F. Rauch: Mater. Sci. Eng. A, 2002, vol. 337, pp. 241–47.

    Article  Google Scholar 

  4. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881–981.

    Article  Google Scholar 

  5. Y.T. Zhu and T.C. Lowe: Mater. Sci. Eng. A, 2000, vol. 291, pp. 46–53.

    Article  Google Scholar 

  6. O.V. Mishin, J.R. Bowen, and S. Lathabai: Scripta Mater., 2010, vol. 63, pp. 20–23.

    Article  Google Scholar 

  7. S. Li, X. Li, and L. Yang: Acta Mater., 2013, vol. 61, pp. 4398–413.

    Article  Google Scholar 

  8. S. Li and H. Li: Mater. Sci. Forum, 2011, vol. 667−669, pp. 271–76.

    Google Scholar 

  9. F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, and M. Jaafari: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5348–55.

    Article  Google Scholar 

  10. F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, M. Hoseini, and J.A. Szpunar: Mater. Des., 2013, vol. 44, pp. 374–81.

    Article  Google Scholar 

  11. A. Gholinia, P.B. Prangnell, and M.V. Markushev: Acta Mater., 2000, vol. 48, pp. 1115–30.

    Article  Google Scholar 

  12. M. Berta, P.J. Apps, and P.B. Prangnell: Mater. Sci. Eng. A, 2005, vol. 410−411, pp. 381–85.

    Article  Google Scholar 

  13. M. Berta and P.B. Prangnell: Solid State Phenom., 2006, vol. 114, pp. 151–58.

    Article  Google Scholar 

  14. K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 1589–99.

    Article  Google Scholar 

  15. D.N. Lee: Scripta Mater., 2000, vol. 43, pp. 115–18.

    Article  Google Scholar 

  16. S. Li, A.A. Gazder, I.J. Beyerlein, C.H.J. Davies, and E.V. Pereloma: Acta Mater., 2007, vol. 55, pp. 1017-32.

    Article  Google Scholar 

  17. P.L. Sun, P.W. Kao, and C.P. Chang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1359–68.

    Article  Google Scholar 

  18. P.B. Prangnell, J.R. Bowen, and A. Gholinia: in Proceedings of the 22nd Risø International Symposium on Materials Science, A.R. Dinesen, M. Eldrup, D. Juul Jensen, S. Linderoth, T.B. Pedersen, and N.H. Pryds, eds., Risø National Laboratory, Roskilde, Denmark, 2001, pp. 105–26.

  19. A.A. Salem, T.G. Langdon, T.R. McNelley, S.R. Kalidindi, and S.L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2879–91.

    Article  Google Scholar 

  20. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 49, pp. 3317–31.

    Article  Google Scholar 

  21. M. Cabbibo: Rev. Adv. Mater. Sci., 2010, vol. 25, pp. 113–21.

    Google Scholar 

  22. A.P. Zhilyaev, D.L. Swisher, K. Oh-ishi, T.G. Langdon, and T.R. McNelley: Mater. Sci. Eng. A, 2006, vol. 429, pp. 137–48.

    Article  Google Scholar 

  23. I.J. Beyerlein, R.A. Lebensohn, and C.N. Tomé: Mater. Sci. Eng. A, 2003, vol. 345, pp. 122–38.

    Article  Google Scholar 

  24. O.V. Mishin and A. Godfrey: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2923–30.

    Article  Google Scholar 

  25. S. Komura, Z. Horita, M. Nemoto, and T.G. Langdon: J. Mater. Res., 1999, vol. 14, pp. 4044–50.

    Article  Google Scholar 

  26. R. Jamaati, M.R. Toroghinejad, and H. Edris: Mater. Sci. Eng. A, 2013, vol. 578, pp. 191–96.

    Article  Google Scholar 

  27. D.A. Hughes, R.A. Lebensohn, H.R. Wenk, and A. Kumar: Proc. R. Soc. Lond. A, 2000, vol. 456, pp. 921–53.

    Article  Google Scholar 

  28. A. Rohatgi, K.S. Vecchio, and G.T. Gray III: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 135–45.

    Article  Google Scholar 

  29. Y.H. Zhao, Z. Horita, T.G. Langdon, and Y.T. Zhu: Mater Sci Eng A, 2008, vol. 474, pp. 342–47.

    Article  Google Scholar 

  30. N. Hansen and D. Juul Jensen: Philos. Trans. R. Soc. Lond. A, 1999, vol. 357, pp. 1447–67.

  31. D.A. Hughes: Philos. Mag., 2003, vol. 83, pp. 3871–93.

    Article  Google Scholar 

  32. M. Furukawa, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2002, vol. 332, pp. 97–109.

    Article  Google Scholar 

  33. S. Li: Scripta Mater., 2009, vol. 60, pp. 706–09.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 51271204) and the National Basic Research Program of China (Grant No. 2012CB619500). Thanks are due to Mr. H. Li and Mr. X. Li for help with the material processing and EBSD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiyi Li.

Additional information

Manuscript submitted October 2, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Zheng, X. & Zhang, M. Grain Refinement in Pure Aluminum Severely Deformed by Equal Channel Angular Extrusion via Extended Processing Routes. Metall Mater Trans A 45, 2601–2611 (2014). https://doi.org/10.1007/s11661-014-2191-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2191-7

Keywords

Navigation