Skip to main content
Log in

Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure–displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.K. Lindroos and M.J. Talvitie: J.Mater. Process. Technol.,1995, vol. 53, pp. 273-284.

    Article  Google Scholar 

  2. Z.Y.Hai and Y.L.Xing: J. Mater. Sci., 2004, vol. 39, pp. 6153-6171.

    Article  Google Scholar 

  3. D.B.Miracle: Compos. Sci. Technol., 2005, vol.65, pp. 2526-2540.

    Article  Google Scholar 

  4. S. IIjima: Nature, 1991, vol. 354, pp. 56–58.

  5. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson: Nature, 1996, vol. 381, pp. 678-680.

    Article  Google Scholar 

  6. A Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy: Phys. Rev. B, 1998, vol. 58B (20), pp. 14013-14019.

    Article  Google Scholar 

  7. E. W. Wong, P. E. Sheehan, C. M. Lieber: Science, 1997, vol. 277, pp. 1971-1974.

    Article  Google Scholar 

  8. M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff: Phys. Rev.Lett., 2000, vol. 84 (24), pp.5552-5555.

    Article  Google Scholar 

  9. M. F. Yu, O. Laurie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S.Ruoff: Science, 2000, vol. 287, pp. 637-640.

    Article  Google Scholar 

  10. Katsuyoshi Kondoh, Hiroyuki Fukuda, Junko Umeda, Hisashi Imai, Bunshi Fugetsu, Morinobu Endo: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4103-4108.

    Article  Google Scholar 

  11. T. Kuzumaki, K. Miyazawa, H. Ichinose and K. Ito: J. Mater. Res., 1998, vol. 13 (9), pp. 2445–2449.

    Article  Google Scholar 

  12. R. Zhong, H. Cong and P. Hou: Carbon, 2003, vol. 41, pp. 848–851.

    Article  Google Scholar 

  13. A. M. K. Esawi and M. A. E. Borady: Compos. Sci. Technol., 2008, vol. 68, pp. 486–492.

    Article  Google Scholar 

  14. S.M. Zhou, X.B. Zhang, Z.P. Ding, C.Y. Min, G.L. Xu, and W.-M. Zhu: Compos. A, 2007, vol. 38A, pp. 301–306.

    Article  Google Scholar 

  15. H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda and M. Yoshida: Mater. Sci. Eng. A, 2008, vol. A495, pp. 282–287.

    Article  Google Scholar 

  16. S. C. Okumus, S. Aslan, R. Karslioglu, D. Gultekin, H. Akbulut: Mater. Sci, 2012, vol. 18, pp. 341-346.

    Google Scholar 

  17. Z.M. Du, J.P. Li: J.Mater. Process. Technol., 2004, vol. 151, pp. 298-301.

    Article  Google Scholar 

  18. J. Vandermeer: U.S Patent No. 6214102, 2001.

  19. C.G.Kang, G.S.Ku: J. Compos. Mater., 1995, vol. 29, pp. 444-462.

    Article  Google Scholar 

  20. T.-Q. Li and L. Odberg: Colloids Surf. A, 2001, vol. 115, pp. 127–135.

    Article  Google Scholar 

  21. P.K. Saha: Aluminum Extrusion Technology, 2000, ASM International, Materials Park.

    Google Scholar 

  22. A.F. Castle and T. Sheppard: Met. Technol., 1976, vol. 3(10), p. 42.

  23. A.F. Castle: Proc. Fifth Int. Alum. Extrus. Technol. Semin., Aluminum Extruders Council and the Aluminum Associations, Inc, 1992.

  24. H.J. Choi, G.B. Kwon, D.H. Bae: Scripta Mater., 2008, vol. 59, pp. 360-363.

    Article  Google Scholar 

  25. H. Li, A. Mirsra, Y. Zhu, Z. Horta, C.C. Koch, T.G. Holesingerd: Mater. Sci. Eng. A, 2009, vol. 523, pp 60-64.

    Article  Google Scholar 

  26. K.M. Liew, X.Q. He, C.H. Wong: Acta Materialia, 2004, vol.52, pp. 2521-2527.

    Article  Google Scholar 

  27. R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni: Scripta Mater., 2005, vol. 53, pp. 1159–63.

    Article  Google Scholar 

  28. W. D. Callister, Jr.: Materials science and engineering an introduction, 3rd ed., John Wiley & Sons, Inc. New York, 2003, pp. 175.

    Google Scholar 

  29. M. Zhao, Y. Liu, L. Chen, and J. Bi: J. Mater. Sci. Technol., 2004,Vol.20 (4), pp.451-453.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the human resource development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government, Ministry of Knowledge Economy (No. 20124030100020) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (201302735).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Kang.

Additional information

Manuscript submitted May 6, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.H., Babu, J.S.S. & Kang, C.G. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement. Metall Mater Trans A 45, 2636–2645 (2014). https://doi.org/10.1007/s11661-014-2185-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2185-5

Keywords

Navigation