Skip to main content

Advertisement

Log in

Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydrogen traps. The steels were hydrogen charged both electrochemically and/or from the gaseous hydrogen source, followed by multiple thermal desorption spectroscopy (TDS) measurements. Electrochemical charging gave rise to a low-temperature peak [323 K to 523 K (50 °C to 250 °C)], originating from the hydrogen trapped near grain boundaries, with activation energy ranging between 24 and 33 kJ/mol, and at small NbC (39 to 48 kJ/mol) or NbN precipitates (23 to 24 kJ/mol). Gaseous charging caused a high-temperature TDS peak [723 K to 923 K (450 °C to 650 °C)], which was attributed to the presence of incoherent precipitates. The activation energy for NbC precipitates, charged in a hydrogen atmosphere, ranged between 63 and 68 kJ/mol and between 100 and 143 kJ/mol for NbN precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Duprez, K. Verbeken, and M. Verhaege: Proc. 2008 Int. Hydrogen Conf., 1st ed., ASM International, Wyoming, WY, 2008, pp. 62–69.

  2. T. Depover, D. Pérez Escobar, E. Wallaert, Z. Zermout, and K. Verbeken: Int. J. Hydrogen Energy, 2014, DOI:10.1016/j.ijhydene.2013.12.190.

  3. H. Asahi, D. Hirakami and S. Yamasaki: ISIJ Int., 2003, vol. 43, pp. 527-533.

    Article  Google Scholar 

  4. B. Malard, B. Remy, C. Scott, A. Deschamps, J. Chene, T. Dieudonne and M. H. Mathon: Mater. Sci. Eng. A, 2012, vol. 536, pp. 110-116.

    Article  Google Scholar 

  5. T. Asaoka, G. Lapasset, M. Aucouturier and P. Lacombe: Corros. NACE, 1978, vol. 34, pp. 39-47.

    Article  Google Scholar 

  6. G. M. Pressouyre and I. M. Bernstein: Metall. Trans. A, 1978, vol. 9, pp. 1571-1580.

    Article  Google Scholar 

  7. M. A. V. Devanathan and Z. Stachurski: Proc. R. Soc. London, Ser. A, 1962, vol. 270, pp. 90-102.

    Article  Google Scholar 

  8. H. G. Lee and J. Y. Lee: Acta Metall., 1984, vol. 32, pp. 131-136.

    Article  Google Scholar 

  9. F. G. Wei, T. Hara and K. Tsuzaki: Metall. Mater. Trans. B, 2004, vol. 35, pp. 587-597.

    Article  Google Scholar 

  10. D. Pérez Escobar, E. Wallaert, L. Duprez, A. Atrens, and K. Verbeken: Met. Mater. Int., 2013, vol. 19, pp. 741–48.

  11. F. G. Wei and K. Tsuzaki: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 331-353.

    Article  Google Scholar 

  12. J. Takahashi, K. Kawakami, Y. Kobayashi and T. Tarui: Scr. Mater., 2010, vol. 63, pp. 261-264.

    Article  Google Scholar 

  13. M. Ohnuma, J. I. Suzuki, F. G. Wei and K. Tsuzaki: Scr. Mater., 2008, vol. 58, pp. 142-145.

    Article  Google Scholar 

  14. F. Wei and K. Tsuzaki: Proc. 2008 Int. Hydrogen Conf., 1st ed., ASM International, Wyoming, WY, 2008, pp. 456–63.

  15. F. Wei, T. Hara, and K. Tsuzaki: Proc. 2008 Int. Hydrogen Conf., 1st ed., ASM International, Wyoming, WY, 2008, pp. 448–55.

  16. D. Pérez Escobar, L. Miñambres, L. Duprez, K. Verbeken, and M. Verhaege: Corros. Sci., 2011, vol. 53, pp. 3166–76.

  17. D. Pérez Escobar, L. Duprez, A. Atrens, and K. Verbeken: J. Nucl. Mater., 2014, DOI:10.1016/j.jnucmat.2013.07.006.

  18. D. Pérez Escobar, L. Duprez, K. Verbeken, and M. Verhaege: Mater. Sci. Eng. A, 2012, vol. 551, pp. 50–58.

  19. S. Lee and J. Lee: Metall. Trans. A, 1986, vol. 17A, pp. 181-187.

    Article  Google Scholar 

  20. J. Y. Lee and S. M. Lee: Surf. Coat. Technol., 1986, vol. 28, pp. 301-314.

    Article  Google Scholar 

  21. J. Lee and J. Lee: Met. Sci., 1983, vol. 17, pp. 426-432.

    Article  Google Scholar 

  22. H. E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702-1706.

    Article  Google Scholar 

  23. W. Choo and J. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135-140.

    Article  Google Scholar 

  24. A. Kumnick and H. Jonhson: Acta Metall., 1980, vol. 28, pp. 33-39.

    Article  Google Scholar 

  25. D. Pérez Escobar, T. Depover, L. Duprez, K. Verbeken, and M. Verhaege: Acta Mater., 2012, vol. 60, pp. 2593–2605.

Download references

Acknowledgments

The authors wish to thank the Special Research Fund (BOF), Ghent University (BOF10/ZAP/121), and the Agency for Innovation by Science and Technology in Flanders (IWT) for support (Project nr SB111205). The authors also acknowledge the technicians and staff working at the hydrogen laboratory at OCAS (ArcelorMittal Global R&D Gent) and the technical staff from the Department Materials Science and Engineering, Ghent University, for their help with the experiments and sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Verbeken.

Additional information

Manuscript submitted September 6, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallaert, E., Depover, T., Arafin, M. et al. Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates. Metall Mater Trans A 45, 2412–2420 (2014). https://doi.org/10.1007/s11661-013-2181-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2181-1

Keywords

Navigation