Skip to main content
Log in

A New Approach of Improving Rain Erosion Resistance of Nanocomposite Sol-Gel Coatings by Optimization Process Factors

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Erosion protection nanocomposite sol-gel coatings based on tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxisilane (GPTMS) are prepared and characterized to protect marine structures susceptible to damage caused by liquid impact, e.g., the submarine body. This study focuses on the optimization of compositional and process parameters of transparent hybrid nanocomposite sol-gel coatings resistant to rain erosion by using statistical design of experimental methodology (DoE) based on Taguchi orthogonal design. The impact of compositional and process parameters of the coatings on the erosion protection performance is investigated by five-factor–four-level design methodology. Hybrid coatings were deposited on AA5083 by a dip coating technique. Optimization coatings are analyzed regarding their adhesion (pull-off), flexibility (impact and mandrel bending), hardness (pencil), wear (Taber wear index), and rain erosion resistance (stationary sample erosion test). The surface morphology and roughness were studied by field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The optimization coatings showed excellent flexibility and adhesion to the substrate with smooth nanostructure surface; the RMS surface roughness was 1.85 nm. The evaluation of the result obtained from abrasion shows cohesive and interfacial wear with abrasive and adhesive mechanisms, respectively. Liquid impact results show cohesive failure of the coatings without any sign of delamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.E. Field: Proc. 5 th Int. Conf. on Erosion by Liquid and Solid Impact, Royal Aircraft Establishment, Farnborough, U.K., 1979.

  2. M. Grundwurmer, O. Nuyken, M. Meyer, J. Wehr, and N. Schupp: Wear, 2007, vol. 263, pp. 318-29.

    Article  Google Scholar 

  3. B.S. Mann and V. Arya: Wear, 2002, vol. 253, pp. 650-61.

    Article  Google Scholar 

  4. J.E. Field: Wear, 1999, vols. 233-5, pp. 1-12.

    Article  Google Scholar 

  5. S. Arjula, A.P. Harsha, and M.K. Ghosh: Mater. Sci., 2008, vol. 43, pp. 1757-68.

    Article  Google Scholar 

  6. G.H. Jilbert and J.E. Field: Wear, 2000, vol. 243, pp. 6-17.

    Article  Google Scholar 

  7. F. Mammeri, E.L. Bourhis, L. Rozes, and C. Sanchez: J. Mater. Chem., 2005, vol. 15, pp. 3787-811.

    Article  Google Scholar 

  8. T. Hubert, J. Schwarz, and B. Oertel: J. Sol-Gel Sci. Technol., 2006, vol. 38, pp. 179-84.

    Article  Google Scholar 

  9. M.L. Zheludkevich, R. Serra, M.F. Montemor, I.M. Miranda Salvado, and M.G.S. Ferreira: Surf. Coat. Technol., 2006, vol. 200, pp. 3084-94.

    Article  Google Scholar 

  10. N.C. Rosero-Navarro, S.A. Pellice, Y. Castro, M. Aparicio, and A. Durán: Surf. Coat. Technol., 2009, vol. 203, pp. 1897-903.

    Article  Google Scholar 

  11. Y. Chen, L. Jin, and Y. Xie: J. Sol-Gel Sci. Technol., 1998, vol. 13, pp. 735-8.

    Article  Google Scholar 

  12. M.J. Jackson and J.E. Field: Br. Ceram. Trans., 2000, vol. 99, pp. 1-13.

    Article  Google Scholar 

  13. A. Hojjati Najafabadi, R. Mozaffarinia, H. Rahimi, R.S. Razavi, and E. Paimozd: Prog. Org. Coat., 2013, vol. 76, pp. 293–301.

  14. H. Rahimi, R. Mozaffarinia, A.H. Najafabadi, R.S. Razavi, and E. Paimozd: Prog. Org. Coat., 2013, vol. 76, pp. 307-17.

    Article  Google Scholar 

  15. A.H. Najafabadi, R. Mozaffarinia, H. Rahimi, R.S. Razavi, and E. Paimozd: Surface Eng., 2013, vol 29, no. 4, pp. 249-54.

    Article  Google Scholar 

  16. S.K. Roy, R. Dey, A. Mitra, S. Mukherjee, M.K. Mitra, and G.C. Das: Mater. Sci. Eng. C, 2007, vol. 27, pp. 725-8.

    Article  Google Scholar 

  17. V. Kakde and V. Mannari: J. Coat. Technol. Res., 2009, vol. 6, no. 2, pp. 201-11.

    Article  Google Scholar 

  18. M.D. Soucek, A.H. Johnson, and J.M. Wegner: Prog. Org. Coat., 2004, vol. 51, pp. 300-11.

    Article  Google Scholar 

  19. M. Zhou, Q. Yang, and T. Troczynski: Surf. Coat. Technol., 2006, vol. 200, pp. 2800-4.

    Article  Google Scholar 

  20. R.L. Parkhill: Ph.D. Thesis, Oklahoma State University, Stillwater, OK, 1999.

  21. H. Chen, J. Wang, and Q. Huo: Thin Solid Films, 2007, vol. 515, pp. 7181-9.

    Article  Google Scholar 

  22. S.L.B. Lana and A.B. Seddon: J. Sol-Gel Sci. Technol., 1998, vol. 13, pp. 461-6.

    Article  Google Scholar 

  23. M. Roy, B. Vishwanathan, and G. Sundararajan: Wear, 1994, vol. 171, pp. 149-61.

    Article  Google Scholar 

  24. I.M. Hutchings: Tribology: Friction and Wear of Engineering Materials, 1st ed., Butterworth-Heinemann Ltd., Cambridge, U.K.,1992.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Department of Material Engineering of Malek Ashtar University of Technology for the financial support and wish to thank Mr. Mohammad Ghanbari Dorabi for sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Hojjati Najafabadi.

Additional information

Manuscript submitted April 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hojjati Najafabadi, A., Shoja Razavi, R., Mozaffarinia, R. et al. A New Approach of Improving Rain Erosion Resistance of Nanocomposite Sol-Gel Coatings by Optimization Process Factors. Metall Mater Trans A 45, 2522–2531 (2014). https://doi.org/10.1007/s11661-013-2180-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2180-2

Keywords

Navigation