Skip to main content
Log in

Transmission Electron Microscopy of Fe79.5B6.5C14 Network Alloys: Part II

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

When undercooled deeply into its undercooling regime, a molten Fe79.5B6.5C14 ingot undergoes spinodal decomposition, splitting into two interpenetrating subnetworks which are denoted by α-(liquid subnetwork) and β-(liquid subnetwork). Transmission electron microscopy results suggest that there are three constraints on crystal growth when the undercooled, decomposed molten ingot solidifies, which are (i) the solidification is due to the advancement of a bulk solid/liquid interface. It consists of a number of α-solid/liquid interfaces moving in the α-(liquid subnetwork) and a number of β-solid/liquid interfaces moving in the β-(liquid subnetwork); (ii) to overcome two long-range composition gradients of C and B atoms; and (iii) the two long-range composition gradients stabilize the bulk solid/liquid interface. The morphology of a solidified or network Fe79.5B6.5C14 ingot is explained in terms of the obtained microscopic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.S. Chen and D. Turnbull: Acta Metall., 1969, vol. 17, pp. 1021–31.

    Article  Google Scholar 

  2. C.P. Chou and D. Turnbull: J. Non-Cryst. Solids, 1975, vol. 17, pp. 169-188.

    Article  Google Scholar 

  3. J.W. Cahn: Trans. TMS-AIME, 1968, vol. 242, pp. 166-80.

    Google Scholar 

  4. J.E. Hillard: Phase Transformations, ASM, Metals Park, OH, 1970, pp. 497- 561.

    Google Scholar 

  5. L.E. Tanner and R. Ray: Scr. Mater., 1980, vol. 14, pp. 657-662.

    Article  Google Scholar 

  6. C.O. Kim and W.L. Johnson: Appl. Phys. Lett., 1982, vol. 40, pp. 382-384.

    Article  Google Scholar 

  7. A.R. Yavari, S. Hamar-Thibault, and H.R. Sinning: Scripta Metall., 1988, vol. 22, pp. 1231-1234.

    Article  Google Scholar 

  8. M.K. Miller, D.J. Larson, R.B. Schwarz, and Y. He: Mater. Sci. Eng. A, 1988, vol. 250, pp. 141-145.

    Article  Google Scholar 

  9. H.W. Ngai, C.C. Leung, W.H. Guo, and H.W. Kui: J. Mater. Res., 2001, vol. 16, pp. 797-802.

    Article  Google Scholar 

  10. P.G. Boswell: Scripta Metall., 1977, vol. 11, pp. 701-707.

    Article  Google Scholar 

  11. H.G. Read, K. Hono, A.P. Tsai, and A. Inoue: Mater. Sci. Eng. A, 1997, vol. 226-228, pp. 453-457.

    Article  Google Scholar 

  12. A.R. Yavari, K. Osamura, H. Okuda, and Y. Amemia: Phys. Rev. B, 1988, vol. 37, pp. 7759-7765.

    Article  Google Scholar 

  13. D. Nagahama, T. Ohkubo, and K. Hono: Scr. Mater., 2003, vol. 49, pp. 729- 734.

    Article  Google Scholar 

  14. S.V. Madge, H. Rosner, and G. Wilde: Scripta Mater., 2005, vol. 53, pp. 147- 151.

    Article  Google Scholar 

  15. S. Lan, Y.L. Yip, M.T. Lau and H.W. Kui: J. Non-Cryst. Solids, 2012, vol. 358, pp. 1298-1302.

    Article  Google Scholar 

  16. M.T. Lau, S. Lan, and H.W. Kui: J. Non-Cryst. Solids, 2012, vol. 358, pp. 2667- 2673.

    Article  Google Scholar 

  17. C.C. Leung, W.H. Guo, and H.W. Kui: Appl. Phys. Lett., 2000, vol. 77, pp. 64-66.

    Article  Google Scholar 

  18. K.L. Lee and H.W. Kui: J. Mater. Res., 1999, vol. 14, pp. 3663-3667.

    Article  Google Scholar 

  19. W.H. Guo and H.W. Kui: Acta Mater., 2000, vol. 48, pp. 2117-2121.

    Article  Google Scholar 

  20. C.W. Yuen, K.L. Lee, and H.W. Kui: J. Mater. Res., 1997, vol. 12, pp. 314-317.

    Article  Google Scholar 

  21. K.L. Ng: M.Phil. Thesis, Chinese University of Hong Kong, 2000.

  22. M.E. Ashby and D.R.H. Jones: Engineering Materials 2, 3rd ed., Elsevier, Oxford, United Kingdom, 2006, pp. 128-31.

    Google Scholar 

  23. W.D. Callister: Fundamentals of Materials Sciences and Engineering, 5th ed., Wiley and Sons, New York, 2001, pp. 401-414.

    Google Scholar 

  24. D.R. Askeland: The Science and Engineering of Materials, 3rd ed., Boston, USA, 1994, pp. 335-375.

    Google Scholar 

  25. C.M. Ho, C.C. Leung, Y.L. Yip, S.W. Mok, and H.W. Kui: Metall. Mater. Trans. A, 2010, vol. 41, pp. 3443-51.

    Article  Google Scholar 

  26. C.M. Ho and H.W. Kui: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3826-37.

    Article  Google Scholar 

  27. W.H. Chow, C.C. Leung, Y.L. Yip, S.W. Mok, and H.W. Kui: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3532–43

  28. L. Brewer, S.-G. Chang, Metallography, Structures and Phase Diagrams, vol. 8, Metals Handbook, 8th ed., American Society for Metals, Metals Park, OH, 1973.

    Google Scholar 

  29. XRD Database PDF Card No.: 00-047-1349.

  30. M.E. Nicholson: J. Metals, 1957, vol. 9, pp. 1-6.

    Google Scholar 

  31. F.D. Richardson and J.H.E. Jeffes: J. Iron and Steel Inst., 1948, vol. 160, pp. 261-270.

    Google Scholar 

  32. K.H. Yip and H.W. Kui: unpublished research.

  33. J.W. Cahn: J. Chem. Phys., 1965, vol. 42, pp. 93-99.

    Article  Google Scholar 

  34. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, PWS-Kent, Boston, MA, 1991, pp. 470-471.

    Google Scholar 

  35. C. Barret and T.B. Massalski: Structure of Metals, 3rd revised ed., Pergamon, Exeter, Great Britain, 1980, pp. 497–98.

  36. J. Cahn: Acta Met., 1960, vol. 8, pp. 554-562.

    Article  Google Scholar 

  37. G. Devaud and D. Turnbull: Acta Metall., 1987, vol. 35, pp. 765-769.

    Article  Google Scholar 

  38. S.D. Peteves and G.J. Abbaschian: Met. Trans. A, 1991, vol. 22, pp. 1259-1270.

    Article  Google Scholar 

  39. S.D. Peteves and G.J. Abbaschian: Met. Trans. A, 1991, vol. 22, pp. 1271-1286.

    Article  Google Scholar 

  40. C.F. Lau and H.W. Kui: Acta Met., 1993, vol. 41, pp. 1999-2005.

    Article  Google Scholar 

  41. D. Turnbull: Contemp. Phys., 1969, vol. 10, pp. 473-488.

    Article  Google Scholar 

  42. R. Hasegawa and R. Ray: J. Appl. Phys., 1978, vol. 49, pp. 4174-4179.

    Article  Google Scholar 

  43. C.J. Lin and F. Spaepen: Appl. Phys. Lett., 1982, vol. 41, pp. 721-723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hin Wing Kui.

Additional information

Manuscript submitted June 7, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, Y.L., Leung, C.C., Mok, S.W. et al. Transmission Electron Microscopy of Fe79.5B6.5C14 Network Alloys: Part II. Metall Mater Trans A 45, 1457–1469 (2014). https://doi.org/10.1007/s11661-013-2096-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2096-x

Keywords

Navigation