Skip to main content

Advertisement

Log in

Effect of Fiber Diameter on Quasi-static and Dynamic Compressive Properties of Zr-Based Amorphous Matrix Composites Reinforced with Stainless Steel Continuous Fibers

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, two Zr-based amorphous alloy matrix composites reinforced with STS304 stainless steel continuous fibers whose diameters were 110 and 250 μm were fabricated by the liquid pressing process. Using a Hopkinson pressure bar, the compressive deformation behavior was investigated at a strain rate of about 103 s−1, and the results were then compared with those obtained under quasi-static loading. 65 to 68 vol pct of STS fibers were homogeneously distributed in the amorphous matrix, in which considerable amounts of dendritic crystalline phases were present. According to the dynamic compressive test results, shear cracks were formed at the maximum shear stress direction in the 110-μm-diameter-fiber-reinforced composite to reach the final failure. In the 250-μm-diameter-fiber-reinforced composite, fibers were not cut by shear cracks because the fiber diameter was large enough to restrict the propagation of shear cracks, while taking over a considerable amount of compressive loads over 1500 MPa. This composite showed the higher yield and maximum compressive strengths and plastic strain than the 110-μm-diameter-fiber-reinforced composite because of the sufficient ductility of STS fibers, the effective interruption of propagation of shear cracks, and the strain hardening of fibers themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.S. Chen and D. Turnbull: J. Chem. Phys., 1968, vol. 48, pp. 323-32.

    Article  Google Scholar 

  2. J. Park, W. Kim, C. Suh, and S. Kim: Met. Mater. Int., 2012, vol. 18, pp. 237-41.

    Article  Google Scholar 

  3. S.F. Guo, H.J. Zhang, Z. Liu, W. Chen, and S.F. Xie: Electrochem. Commun., 2012, vol. 24, pp. 39-42.

    Article  Google Scholar 

  4. D. Zander and U. Köster: Mater. Sci. Eng., 2004, vol. A375, pp. 53-59.

    Article  Google Scholar 

  5. H.-S. Shin, Y.-C. Jung, and J.-K. Lee: Met. Mater. Int., 2012, vol. 18, pp. 685-89.

    Article  Google Scholar 

  6. Z.Y. Liu, Y. Yang, S. Guo, X.J. Liu, J. Lu, Y.H. Liu, and C.T. Liu: J. Alloy. Compd., 2011, vol. 509, pp. 3269-73.

    Article  Google Scholar 

  7. S.L. Wang, H.X. Li, S.Y. Hwang, S.D. Choi, and S. Yi: Met. Mater. Int., 2012, vol. 18, pp. 607-12.

    Article  Google Scholar 

  8. C. Fan, C. Li, A. Inoue, and V. Haas: Phys. Rev. B, 2000, vol. 61, pp. R3761-63.

    Article  Google Scholar 

  9. S. González, J. Sort, D.V. Louzguine-Luzgin, J.H. Perepezko, M.D. Baró, and A. Inoue: Intermetallics, 2010, vol. 18, pp. 2377-84.

    Article  Google Scholar 

  10. D.H. Bae, H.K. Lim, S.H. Kim, D.H. Kim, and W.T. Kim: Acta Mater., 2002, vol. 50, pp. 1749-59.

    Article  Google Scholar 

  11. S.L. Wang, H.X. Li, Y.U. Jeong, and S. Yi: Met. Mater. Int., 2012, vol. 18, pp. 791-97.

    Article  Google Scholar 

  12. D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085-90.

    Article  Google Scholar 

  13. Y.K. Xu and J. Xu: Scripta Mater., 2003, vol. 49, pp. 843-48.

    Article  Google Scholar 

  14. H. Choi-Yim, R. Busch, U. Köster, and W.L. Johnson: Acta Mater., 1999, vol. 47, pp. 2455-62.

    Article  Google Scholar 

  15. D.H. Bae, M.H. Lee, S. Yi, D.H. Kim, and D.J. Sordelet: J. Non-cryst. Solids, 2004, vol. 337, pp. 15-20.

    Article  Google Scholar 

  16. H.P. Degischer: Mater. Design, 1997, vol. 18, pp. 221-26.

    Article  Google Scholar 

  17. Y. Jang, S. Kim, Y. Jung, and S. Lee: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 217-23.

    Article  Google Scholar 

  18. K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 828-37.

    Article  Google Scholar 

  19. E. Axinte: Mater. Design, 2012, vol. 35, pp. 518-56.

    Article  Google Scholar 

  20. A. Marchand and J. Duffy: J. Mech. Phys. Solids, 1988, vol. 36, pp. 251-83.

    Article  Google Scholar 

  21. K.A. Hartley, J. Duffy, and R.H. Hawley: J. Mech. Phys. Solids, 1987, vol. 35, pp. 283-301.

    Article  Google Scholar 

  22. J.W. Qiao, P. Feng, Y. Zhang, Q.M. Zhang, and G.L. Chen: J. Alloy. Compd., 2009, vol. 486, pp. 527-31.

    Article  Google Scholar 

  23. V.C. Li, Y. Wang, and S. Backer: Composite, 1990, vol. 21, pp. 132-40.

    Article  Google Scholar 

  24. H.D. Wagner, and A. Lustiger: Compos. Sci. Technol., 2009, vol. 69, pp. 1323-25.

    Article  Google Scholar 

  25. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka: Compos. Part A, 2011, vol. 42, pp. 234-43.

    Article  Google Scholar 

  26. E.D.H. Davies and S.C. Hunter: J. Mech. Phys. Solids, 1963, vol. 11, pp. 155-79.

    Article  Google Scholar 

  27. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: Acta Mater., 1998, vol. 46, pp. 1025-43.

    Article  Google Scholar 

  28. Y. Jang, S. Kim, S. Lee, D. Kim, and M. Um: Compos. Sci. Technol., 2005, vol. 65, pp. 781-84.

    Google Scholar 

  29. S.B. Lee, K. Matsunaga, Y. Ikuhara, and S.-K. Lee: Mater. Sci. Eng. A, 2007, vol. A449, pp. 778-81.

    Article  Google Scholar 

  30. Y. Kim, S.Y. Shin, J.S. Kim, H. Huh, K.J. Kim, and S. Lee: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3023-33.

    Article  Google Scholar 

  31. K. Lee, K. Euh, D.-H. Nam, S. Lee, and N.J. Kim: Mater. Sci. Eng., 2007, vol. A449, pp. 937-40.

    Article  Google Scholar 

  32. S.-B. Lee, K. Lee, S.-K. Lee, and S. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3159-70.

    Article  Google Scholar 

  33. M.G. da Silva and K.T. Ramesh: Int. J. Plasticity, 1997, vol. 13, pp. 587-610.

    Article  Google Scholar 

  34. M.L. Wang, X. Hui, and G.L. Chen: J. Mater. Res., 2008, vol. 23, pp. 320-27.

    Article  Google Scholar 

  35. N. Nagendra, U. Ramamurty, T. T. Goh, and Y. Li: Acta Mater., 2000, vol. 48, pp. 2603-15.

    Article  Google Scholar 

  36. Q. Wei, N. Wanderka, P. Schubert-Bischoff, M.P. Macht, and S. Friedrich: J. Mater. Res., 2000, vol. 15, pp. 1729-34.

    Article  Google Scholar 

  37. G. He, J. Lu, Z. Bian, D. Chen, G. Chen, G. Tu, and G. Chen: Mater. Trans., 2001, vol. 42, pp. 356-64.

    Article  Google Scholar 

  38. P. Lowhaphandu, S.L. Montgomery, and J.J. Lewandowski: Scripta Mater., 1999, vol. 41, pp. 19-24.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2010-0026981). Authors are grateful to Dr. Choongnyun Paul Kim of POSTECH for his helpful discussion on the fabrication of the composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted May 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, G.S., Lee, SB., Lee, SK. et al. Effect of Fiber Diameter on Quasi-static and Dynamic Compressive Properties of Zr-Based Amorphous Matrix Composites Reinforced with Stainless Steel Continuous Fibers. Metall Mater Trans A 45, 1284–1293 (2014). https://doi.org/10.1007/s11661-013-2095-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2095-y

Keywords

Navigation