Skip to main content
Log in

Effect of Residual Stress and Strain-Induced α′-Martensite on Delayed Cracking of Metastable Austenitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The role of residual stresses and strain-induced α′-martensite in delayed cracking of metastable austenitic stainless steels was studied by means of Swift cup tests, measurement of residual stresses by X-ray diffraction and ring slitting, and α′-martensite content determination. Low-Ni, high-Mn austenitic stainless steels, e.g., AISI 201, were compared with Fe-Cr-Ni austenitic stainless steels. The presence of α′-martensite seemed to be a necessary prerequisite for delayed cracking to occur in austenitic stainless steels with typical internal hydrogen concentrations (<5 ppm). Stable low-Ni austenitic stainless steel was not prone to delayed cracking. The low-Ni metastable grades showed more severe cracking at lower degree of deformation and lower volume fraction of α′-martensite than that of the metastable 300-series grades. The limiting α′-martensite content, below which delayed cracking did not occur, decreased along with the nickel content of the material. The strain-induced martensitic transformation substantially increased the magnitude of residual stresses in deep-drawn cups. One explanation for high sensitivity of the low-Ni grades to delayed cracking after deep drawing is their higher residual stresses compared to that of the Fe-Cr-Ni grades. Alloying elements of the stainless steels, nickel, and carbon in particular, influence the sensitivity to delayed cracking through their effect on the properties of the α′-martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Zinbi and A. Bouchou: Eng. Failure Anal., 2010, vol.17, pp. 1028-1037.

    Article  Google Scholar 

  2. A. Frehn and W. Bleck: Stainless Steel World, 2003, Jan/Feb, pp. 40–45.

  3. ASM International: ASM Handbook, Failure Analysis and Prevention, vol. 11, ASM International, Materials Park, OH, 2002, pp. 809–22.

  4. S. Singh and C. Altstetter: Metall. Trans. A, 1982, vol. 13A, pp. 1799-1808.

    Article  Google Scholar 

  5. Y. Yuying, L. Chunfeng and X. Hongzhi: J. Mater. Process. Technol., 1992, vol. 30, pp. 167-172.

    Article  Google Scholar 

  6. H. Hänninen and T. Hakkarainen: Corrosion, 1980, vol. 36, pp. 47-51.

    Article  Google Scholar 

  7. W.-Y. Chu, J. Yao and C.-M. Hsiao: Metall. Trans. A, 1984, vol. 15A, pp. 729-733.

    Article  Google Scholar 

  8. C. San Marchi, B.P. Somerday, X. Tang and G.H. Schiroky: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 889-904.

    Article  Google Scholar 

  9. T. Kanezaki, C. Narazaki, Y. Mine, S. Matsuoka and Y. Murakami: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 2604-2619.

    Article  Google Scholar 

  10. L. Zhang, M. Wen, M. Imade, S. Fukuyama and K. Yokogawa: Acta Mater., 2008, vol. 56, pp. 3414-3421.

    Article  Google Scholar 

  11. M.R. Berrahmoune, S. Berveiller, K. Inal and E. Patoor: Mater. Sci. Forum, 2006, vol. 524-525, pp. 95-100.

    Article  Google Scholar 

  12. M. Martin, S. Weber, C. Izawa, S. Wagner, A. Pundt and W. Theisen: Int. J. Hydrogen Energy, 2011, vol. 36, pp. 11195-11206.

    Article  Google Scholar 

  13. Z. Wang and B. Gong: Handbook of Residual Stress and Deformation of Steel, ASM International, Materials Park, Ohio, 2002, pp 141-149.

    Google Scholar 

  14. J. Talonen: Doctoral Dissertation, Helsinki University of Technology, 2007.

  15. J. Post, K. Datta and J. Beyer: J. Mater. Sci. Eng. A, 2008, vol. 485, pp. 290-298.

    Article  Google Scholar 

  16. M.R. Berrahmoune, S. Berveiller, K. Inal and E. Patoor: J. Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 262-266.

    Article  Google Scholar 

  17. Y.V. Taran, M.R. Daymond and J. Schreiber: Physica B, 2004, vol. 350, pp. 98-101.

    Article  Google Scholar 

  18. J. Johansson and M. Odén: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1557-1570.

    Article  Google Scholar 

  19. Y.D. Wang, R. Lin, Peng, X.-L. Wang and R.L. McGreevy: Acta Mater., 2002, vol. 50, pp. 1717-1734.

    Article  Google Scholar 

  20. M.R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin and E. Patoor: J. Mater. Sci. Eng. A 2004, vol. 378, pp. 304-307.

    Article  Google Scholar 

  21. L. Che, M. Gotoh, Y. Horimoto and Y. Hirose: J. Iron Steel Res. Int., 2007, vol.14, pp. 31-38.

    Google Scholar 

  22. J. Charles, A. Kosmac, J. Krautschick, J. Simón, N. Suutala, and T. Taulavuori: Materials and Applications Series, vol. 12, The European Stainless Steel Development Association, Brussels, Belgium, 2010, pp. 9–11.

  23. W. Schaller, T.E. Schmid and E. Snape: Sheet Met. Ind., 1972, vol. 10, pp. 621-624.

    Google Scholar 

  24. L. Zhang, M. Imade, B. An, M. Wen, T. Iljima, S. Fukuyama and K. Yokogawa: ISIJ Int., 2012, vol. 52, pp. 240-246.

    Article  Google Scholar 

  25. S.M. Teus, V.N. Shyvanyuk and V.G. Gavriljuk: J. Mater. Sci. Eng. A, 2008, vol. 497, pp. 290-294.

    Article  Google Scholar 

  26. K. Hoshino: Trans. ISIJ, 1980, vol. 20, pp. 147-153.

    Google Scholar 

  27. S. Curtze, V.-T. Kuokkala, A. Oikari, J. Talonen and H. Hänninen: Acta Mater., 2011, vol. 59, pp. 1068-1076.

    Article  Google Scholar 

  28. J. Talonen, P. Aspegren and H. Hänninen: Mater. Sci. Technol., 2004, vol. 20, pp. 1506-1512.

    Article  Google Scholar 

  29. T. Gartka and T. Dyl: Arch. Metall. Mater., 2006, vol. 51, pp. 199-203.

    Google Scholar 

  30. H.W. Walton: Handbook of Residual Stress and Deformation of Steel, ASM International, Materials Park, Ohio, 2002, pp. 89-98.

    Google Scholar 

  31. T. Michler, J. Naumann and E. Sattler: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 12765-12770.

    Article  Google Scholar 

  32. G. Dini, A. Najafizadeh, S.M. Monir-Vaghefi and R. Ueji: J. Mater. Sci. Technol., 2010, vol. 26, pp. 181-186.

    Article  Google Scholar 

  33. A. Kisko, R.D.K. Misra, J. Talonen and L.P. Karjalainen: J. Mater. Sci. Eng. A, 2013, vol. 578, pp. 408-416.

    Article  Google Scholar 

  34. Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama and S. Takaki: ISIJ Int., 2013, vol. 53, pp. 1224-1230.

    Article  Google Scholar 

  35. Q. Luo and A.H. Jones: Surf. Coat. Technol., 2010, vol. 205, pp. 1403-1408.

    Article  Google Scholar 

  36. K. Kapoor, D. Lahiri, C. Padmaprabu and T. Sanyal: J. Nucl. Mater., 2002, vol. 303, pp. 147-155.

    Article  Google Scholar 

Download references

Acknowledgments

This research was done as part of the FIMECC Light and Efficient Solutions (LIGHT) research program funded by the Finnish Funding Agency for Technology and Innovation (Tekes). The authors would like to thank FIMECC Ltd, Tekes, Outokumpu and Doctoral Program in Concurrent Mechanical Engineering financed by the Ministry of Education and the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvi Papula.

Additional information

Manuscript submitted May 5, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papula, S., Talonen, J. & Hänninen, H. Effect of Residual Stress and Strain-Induced α′-Martensite on Delayed Cracking of Metastable Austenitic Stainless Steels. Metall Mater Trans A 45, 1238–1246 (2014). https://doi.org/10.1007/s11661-013-2090-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2090-3

Keywords

Navigation