Skip to main content

Advertisement

Log in

Effects of Alloying Elements on the Thermal Stability and Corrosion Resistance of an Fe-based Metallic Glass with Low Glass Transition Temperature

  • Symposium: Bulk Metallic Glasses X
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of alloying elements on the thermal stability, glass-forming ability (GFA), corrosion resistance, and magnetic and mechanical properties of a soft magnetic Fe75P10C10B5 metallic glass with a low glass transition temperature (T g) of 723 K (450°C) were investigated. The addition of Mo, Ni, and Co significantly increased the stabilization of supercooled liquid, GFA, and corrosion resistance in the H2SO4 solution. The maximum critical diameter (d c) of 4 mm for glass formation was obtained for the Fe55Co10Ni5Mo5P10C10B5 alloy, which shows the largest supercooled liquid region (ΔT x ) of 89 K (89 °C). The substitution of Cr for Mo further enhanced the corrosion resistance of the Fe55Co10Ni5Mo5P10C10B5, while the ΔT x and d c decreased. The (Fe, Ni, Co)70(Mo, Cr)5P10C10B5 bulk metallic glasses showed low T g of 711 K to 735 K (438 °C to 462 °C), wide ΔT x of 67 K to 89 K, high saturation magnetization of 0.79 to 0.93 T, low coercive force of 2.36 to 6.61 A m−1, high compressive yield strength of 3271 to 3370 MPa, and plastic strain of 0.8 to 2.3 pct. In addition, the mechanism for enhancing stability of supercooled liquid was discussed in terms of the precipitated phases during crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Inoue and N. Nishiyama: MRS Bull., 2007, vol. 32, pp. 651–58.

    Article  Google Scholar 

  2. J. Schroers: Adv. Mater., 2010, vol. 22, pp. 1566–97.

    Article  Google Scholar 

  3. Y. Saotome, K. Itoh, T. Zhang, and A. Inoue: Scripta Mater., 2001, vol. 44, pp. 1541–45.

    Article  Google Scholar 

  4. Q. Jing, R.P. Liu, G.J. Shao, and W.K. Wang: Mater. Sci. Eng. A, 2003, vol. 359 pp. 402–04.

  5. G. Kumar, H.X. Tang, and J. Schroers: Nature, 2009, vol. 457, pp. 868–72.

    Article  Google Scholar 

  6. W. Zhang, H. Guo, M.W. Chen, Y. Saotome, C.L. Qin, and A. Inoue: Scripta Mater., 2009, vol. 61, pp. 744–47.

    Article  Google Scholar 

  7. Y. Kawamura, T. Nakamura, A. Inoue, and T. Masumoto: Mater. Trans. JIM, 1999, vol. 40, pp. 794–803.

    Article  Google Scholar 

  8. A. Inoue, Y. Shinohara, and J.S. Gook: Mater. Trans. JIM, 1995, vol. 36, pp. 1427–1433.

    Article  Google Scholar 

  9. C. Suryanarayana, and A. Inoue: Int. Mater. Rev., 2013, vol. 58, pp. 131–66.

    Article  Google Scholar 

  10. T. Zhang, F.J. Liu, S.J. Pang, and R. Li: Mater. Trans., 2007, vol. 48, pp. 1157–60.

    Article  Google Scholar 

  11. D.H. Xu, G. Duan, and W.L. Johnson: Phys. Rev. Lett., 2004, vol. 92, pp. 245504–507.

    Article  Google Scholar 

  12. W.H. Wang: Prog. Mater. Sci., 2007, vol. 52, pp. 540–96.

    Article  Google Scholar 

  13. B.L. Shen, M. Akiba, and A. Inoue: J. Appl. Phys., 2006, vol. 100, pp. 043523-1-5.

  14. S.J. Pang, T. Zhang, K. Asami, and A. Inoue: J. Mater. Res., 2002, vol. 17, pp. 701–4.

    Article  Google Scholar 

  15. D. Turnbull: Contempt. Phys., 1969, vol. 10, pp. 473–88.

    Article  Google Scholar 

  16. Z.P. Lu, and C.T. Liu: Acta Mater., 2002, vol. 50, pp. 3501–12.

    Article  Google Scholar 

  17. J. Schroers: JOM, 2005, vol. 57, pp. 35–9.

    Article  Google Scholar 

  18. E. McCafferty: Corros. Sci., 2005, vol. 47, pp. 3202–15.

    Article  Google Scholar 

  19. Z.L. Long, Y. Shao, X.H. Deng, Z.C. Zhang, Y. Jiang, P. Zhang, B.L. Shen, and A. Inoue: Intermetallics, 2007, vol. 15, pp. 1453–58.

    Article  Google Scholar 

  20. H.S. Chen: Rep. Prog. Phys., 1980, vol. 43, pp. 353–32.

    Article  Google Scholar 

  21. X.J. Gu, S.J. Poon, G.J. Shiflet, and M. Widom: Appl. Phys. Lett., 2008, vol. 92, pp. 161910–12.

    Article  Google Scholar 

  22. A. Takeuchi, and A. Inoue: Mater. Trans. JIM, 2000, vol. 41, pp. 1372–78.

    Article  Google Scholar 

  23. B.L. Shen, M. Akiba, and A. Inoue: Phys. Rev. B, 2006, vol. 73, pp. 104204–209.

    Article  Google Scholar 

  24. A. Inoue, and B.L. Shen: Adv. Mater., 2004, vol. 16, pp. 2189–92.

    Article  Google Scholar 

  25. M. Imafuku, C.F. Li, M. Matsushita, and A. Inoue: Jpn. J. Appl. Phys., 2002, vol. 41, pp. 219–21.

    Article  Google Scholar 

  26. Japan Institute of Metals: Metals Databook, Maruzen, Tokyo, 1983, p. 8.

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (Grant Nos. 51271043, 51171034, and 51201024), the Fundamental Research Funds for the Central Universities of China [Grant Nos. DUT11RC(3)29, and DUT11RC(3)70], and Research and Development Project on Advanced Metallic Glasses, Inorganic Materials and Joining Technology from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Additional information

Manuscript submitted April 30, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Jia, X., Zhang, W. et al. Effects of Alloying Elements on the Thermal Stability and Corrosion Resistance of an Fe-based Metallic Glass with Low Glass Transition Temperature. Metall Mater Trans A 45, 2393–2398 (2014). https://doi.org/10.1007/s11661-013-2071-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2071-6

Keywords

Navigation