Skip to main content
Log in

Effects of Thermal and Cryogenic Conditionings on Flexural Behavior of Thermally Shocked Cu-Al2O3 Micro and NanoComposites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This investigation has used flexural test to explore the effects of thermal treatments, i.e., high-temperature and cryogenic environments on the mechanical property of Al2O3 particulate-reinforced Cu metal matrix micro and nanocomposites in ex-situ and in-situ conditions. Cu-5 vol. pct Al2O3 micro (10 μm)- and nanocomposites (<50 nm) fabricated by powder metallurgy route were subjected to up-thermal shock cycle [193 K to 353 K (−80 °C to 80 °C)] and down-thermal shock cycle [353 K to 193 K (from 80 °C to −80 °C)] for different time periods followed by 3-point bend test. One batch of specimens (micro and nanocomposites) was conditioned at 353 K and 193 K (80 °C and −80 °C) separately followed by 3-point flexural test. High-temperature flexural test was performed at 373 K and 523 K (80 °C and 250 °C) on the micro and nanocomposites. All the fractured samples obtained after various thermal treatments were studied under scanning electron microscope (SEM). The development of thermal stresses quite often results in concentration of residual stresses at the particle/matrix interface eventually weakening it. Enhancement of flexural strength was recorded for down- as well as for up-thermal shock in microcomposites. The high-temperature flexural strengths of micro and nanocomposites are lower than those at ambient temperature. The amelioration and declination in mechanical properties as a consequence of thermal shock, thermal conditioning, and high-temperature flexural testing have been discussed in the light of fractography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.C. Tjong and Z.Y. Ma: Mater. Sci. Eng., 2000, vol. 29, pp. 49–113.

    Article  Google Scholar 

  2. A. Ayyar and N. Chawla: Compos. Sci. Technol., 2006, vol. 66, pp. 1980–84.

    Article  Google Scholar 

  3. M. Taya and R.J. Arsenault: Acta Metall., 1987, vol. 35, pp. 651–9.

    Article  Google Scholar 

  4. A. S. Md. Fahim Chowdhury: Thesis no: 4538, Institute of Condensed Matter Physics, Lausanne, 2009.

  5. R.J. Arsenault and R.M. Fisher: Scripta Metall., 1983, vol. 17, pp. 67–71.

    Article  Google Scholar 

  6. T. Christman, A. Needleman, S. Nutt, and S. Suresh: Mater. Sci. Eng. A, 1989, vol. 107, pp. 49–61.

    Article  Google Scholar 

  7. A. Wang and H.J. Rack: Wear, 1991, vol. 146, pp. 337–48.

    Article  Google Scholar 

  8. A. Kelly and C. Zweben: Comprehensive Composite Materials 3, 1st ed., Elsevier Science Ltd., Oxford, 2000, pp. 341–69.

  9. Y.C. Zhou, S.G. Long, and Y.W. Liu: Mech. Mater., 2003, vol. 35, pp. 1003–20.

    Article  Google Scholar 

  10. B.C. Ray: Mater. Lett., 2004, vol. 58, pp. 2175–77.

    Article  Google Scholar 

  11. Z.Y. Ma, J. Bi, Y.X. Lu, and M. Luo: Scripta Metall. Mater., 1994, vol. 30, pp. 43–6.

    Article  Google Scholar 

  12. P. Poza and J. Llorca: Mater. Sci. Eng. A, 1996, vol. 206, pp. 183–93.

    Article  Google Scholar 

  13. J.S. Shelley, R. LeClaire, and J. Nichols: Project no: AFRL-PR-ED-TP-2001-023, Air Force Research Laboratory, Edwards AFB, January 2001.

  14. R. Boccaccini and K.K. Chawla: http://www.iccm-central.org/Proceedings/ICCM12proceedings/site/papers/pap1210.pdf. Accessed 20 Feb 2012.

  15. S. M. Pickard and B. Derby: Mater. Sci. Eng. A, 1991, vol. 135, pp. 213–16.

  16. S. Pal, V.V. Bhanuprasad, and R. Mitra: Mater. Sci. Eng. A, 2008, vol. 489, pp. 11–20.

  17. M. Russell-Stevens, R. Todd, and M. Papakyriacou: Mater. Sci. Eng. A, 2005, vol. 97, pp. 249–56.

  18. B. Inem and G. Pollard: J. Mater. Sci., 1993, vol. 28, pp. 4427–34.

    Article  Google Scholar 

  19. B.C. Ray: J. Reinf. Plast. Compos., 2005, vol. 24, pp. 713–17.

    Article  Google Scholar 

  20. G. Meijer, F. Ellyin, and Z. Xia: Composites B, 2000, vol. 31, pp. 29–37.

    Article  Google Scholar 

  21. A. Kostka, J. Lelatko, M. Gigla, H. Morawiec, and A. Janas: Mater. Chem. Phys., 2003, vol. 81, pp. 323–25.

  22. S. Ho and E.J. Lavernia: Appl. Compos. Mater., 1995, vol. 2, pp. 1–30.

    Article  Google Scholar 

  23. M. Zhao, G. Wu, D. Zhu, L. Jiang, and Z. Dou: Mater. Lett., 2004, vol. 58, pp. 1899–902.

  24. J.J. Bhattacharyya and R. Mitra: Mater. Sci. Eng. A, 2012, vol.557, pp. 92–105.

  25. B.C. Ray: J. Colloid Interface Sci., 2006, vol. 298, pp. 111–7.

    Article  Google Scholar 

  26. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill Book Co., New York, NY, 1976, pp. 145–83.

  27. E. Martin, A. Forn, and R. Nogue: J. Mater. Process. Technol., 2003, vols. 1–4, pp. 143–4.

    Google Scholar 

  28. M. Taya, K.E. Lulay, and D.J. Lloyd: Acta Metall. Mater., 1991, vol. 39, pp. 73–87.

    Article  Google Scholar 

  29. Y. Uematsu, K. Tokaji, and M. Kawamura: Compos. Sci. Technol., 2008, vol. 68, pp. 2785–91.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the National Institute of Technology (NIT), Rourkela for providing the necessary financial and infrastructural supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushbu Dash.

Additional information

Manuscript submitted October 5, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, K., Panda, S. & Ray, B.C. Effects of Thermal and Cryogenic Conditionings on Flexural Behavior of Thermally Shocked Cu-Al2O3 Micro and NanoComposites. Metall Mater Trans A 45, 1567–1578 (2014). https://doi.org/10.1007/s11661-013-2070-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2070-7

Keywords

Navigation