Skip to main content
Log in

Effect of Austenite Pancaking on the Microstructure, Texture, and Bendability of an Ultrahigh-Strength Strip Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of austenite pancaking in the non-recrystallization regime on microstructure and texture evolution and thereby on bendability was investigated in an ultrahigh-strength strip steel with a martensitic-bainitic microstructure. The results indicate that an increase in rolling reduction (R tot) below the non-recrystallization temperature, which improves the strength and toughness properties, increases the intensities of the ~{554}〈225〉 α and ~{112}〈110〉 α texture components along the strip centerline and of the ~{112}〈111〉 α component at the surface region. Even with the highest R tot of 79 pct, the bendability along the rolling direction was good, but the preferred alignment of rod-shaped MA constituents along the rolling direction led to a dramatic decrease in the bendability transverse to the rolling direction, with severe cracking occurring even at small bending angles. The early cracking is attributed to localization of the strain in narrow shear bands. It is concluded that the Rtot value has to be limited to guarantee successful bendability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. JMatPro is a trademark of Sente Software Ltd., UK.

References

  1. H. Asahi, T. Hara, M. Sugiyama, N. Maruyama, Y. Terada, H. Tamehiro, K. Koyama, S. Ohkita, H. Morimoto, K. Tomioka, N. Doi, M. Murata, N. Ayukawa, H. Akasaki, D.P. Fairchild, M.L. Macia, C.W. Petersen, J.Y. Koo, N.V. Bangaru, and M.J. Luton: Int. J. Offshore Polar Eng., 2004, vol. 14, pp. 11–17.

    Google Scholar 

  2. M. Hemmilä, R. Laitinen, T. Liimatainen, and D. Porter: Proc. 1st Int. Conf. Super-High Strength Steels, Rome, Italy, 2005.

  3. A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, J.I. Kömi, and A.J. DeArdo: Proc. 2nd Int. Conf. Super-High Strength Steels, 2010, Peschiera del Garda, Italy.

  4. A.J. Kaijalainen, P.P. Suikkanen, T.J. Limnell, L.P. Karjalainen, J.I. Kömi, and D.A. Porter: J. Alloys Compd., 2012, DOI:10.1016/j.jallcom.2012.03.030.

  5. J. Heikkala and A. Väisänen: Proc. 11th Biennial Conf. on Engineering Systems Design and Analysis, 2012, Nantes, France.

  6. A. Kaijalainen, P. Karjalainen, D. Porter, P. Suikkanen, J. Kömi, V. Kesti, and T. Saarinen: Proc. 8th Int. Conf. Clean Steel, 2012, Budapest, Hungary.

  7. R.D.K. Misra, N. Nathani, F. Siciliano, and T. Carneiro: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3024–29.

    Article  Google Scholar 

  8. K. Yamazaki, Y. Mizuyama, M. Oka, H. Tsuchiya, and H. Yasuda: Nippon Steel Tech. Rep., 1995, vol. 64, pp. 37–44.

    Google Scholar 

  9. K. Sugimoto, R. Kikuchi, M. Tsunezawa, S. Hashimoto, T. Kashima and S. Ikeda: Tetsu-to-Hagane, 2003, vol. 89, pp. 1065–70.

    Google Scholar 

  10. K. Sugimoto, B. Yu, Y. Mukai and S. Ikeda: ISIJ Int., 2005, vol. 45, pp. 1194–1200.

    Article  Google Scholar 

  11. M. Takahashi: Nippon Steel Tech. Rep., 2003, vol. 88, pp. 2–7.

    Google Scholar 

  12. M. Kaupper and M. Merklein: CIRP Ann. Manuf. Technol., 2013, vol. 62, pp. 247–50.

    Article  Google Scholar 

  13. J. Steninger and A. Melander: Scand. J. Metall., 1982, vol. 11, pp. 55–71.

    Google Scholar 

  14. C. Soyarslan, M. Malekipour Gharbi and A.E. Tekkaya: Int. J. Solids Struct., 2012, vol. 49, pp. 1608–26.

    Article  Google Scholar 

  15. M.J. EricksonKirk, M.T. EricksonKirk, S. Rosinski, and J. Spanner: J. Pressure Vessel Technol., 2009, vol. 131.

  16. M. Somani, D.A. Porter, J. Pyykkönen, J.M. Tarkka, J.I. Kömi, T.A. Intonen, and L.P. Karjalainen: Proc. Int. Conf. on Microalloyed Steels: Processing, Microstructure, Properties and Performance, 2007, Pittsburgh, USA, pp. 95–106.

  17. B. Mintz, J. Lewis, and J.J. Jonas: Mater. Sci. Technol., 1997, vol. 13, pp. 379–88.

    Google Scholar 

  18. C. Ghosh, V.V. Basabe, J.J. Jonas, Y.-M. Kim, I.-H. Jung, and S. Yue: Acta Mater., 2013, vol. 61, pp. 2348–62.

    Article  Google Scholar 

  19. J.J. Jonas, C. Ghosh, and V.V. Basabe: Steel Res. Int., 2012, vol. 83, pp. 1–6.

    Google Scholar 

  20. S. Zajac, V. Schwinn, and K-H. Tacke: Mater. Sci. Forum, 2005, vol. 500–501, pp. 387–94.

    Article  Google Scholar 

  21. M.J.W. Green, R. Kuziak, P.F. Morris, and M. Pietrzyk: 4th Int. Conf. Thermomechanical Processing of Steels, 2012, Sheffield, UK.

  22. H.J. McQueen, E.V. Konopleva, and V.M. Khlestov: Int. Symposium on Steel for Fabricated Structures, 1999, Cincinnati, USA, pp. 172–79.

  23. L. Meyer, W. Münschenborn, and U. Schriever: Thermomechanical Processing in Theory, Modelling and Practice, Stockholm, Sweden, 1996, pp. 93–120.

    Google Scholar 

  24. P.J. Hurley, P.D. Hodgson, and B.C. Muddle: Scripta Mater., 1999, vol. 40, pp. 433–38.

    Article  Google Scholar 

  25. P.J. Hurley and P.D. Hodgson: Mater. Sci. Eng. A, 2001, vol. 302A, pp. 206–14.

    Article  Google Scholar 

  26. I. Kozasu, C. Ouchi, T. Sampei, and T. Okita: Microalloying’75, Union Carbide Co., New York, NY, 1977, pp. 100–14.

    Google Scholar 

  27. T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, and T. Maki: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1003–13.

    Article  Google Scholar 

  28. R.K. Ray and J.J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–36.

    Article  Google Scholar 

  29. R.K. Ray, J.J. Jonas, M.P.Butron-Guillen, and J. Savoie: ISIJ Int., 1994, vol. 34, pp. 927–42.

    Article  Google Scholar 

  30. C.G. Kang, H.G. Kang, H.C. Kim, M.Y. Huh, and H.G. Suk: J. Mater. Process. Technol., 2007, vol. 187-188, pp. 542-45.

    Article  Google Scholar 

  31. L. Kestens and J.J. Jonas: ASM Handbook vol. 14A, Metalworking: Bulk Forming, 2005, pp. 685–700.

  32. T. Sakai, Y. Saito, and K. Kato: Trans. ISIJ, 1987, vol. 27, pp. 520–25.

    Article  Google Scholar 

  33. D. Raabe: J. Mater. Sci., 1995, vol. 30, pp. 47–52.

    Article  Google Scholar 

  34. N.J. Wittridge and J.J. Jonas: Acta Mater., 2000, vol. 48, pp. 2737–49.

    Article  Google Scholar 

  35. C. Därmann-Novak and B. Engl: Steel Res., 1991, vol. 62, pp. 576–79.

    Google Scholar 

  36. M.S. Joo, D.-W. Suh, J.H. Bae, N. Sanchez Mourino, R. Petrov, L.A.I. Kestens, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2012, vol. 556A, pp. 601–06.

    Article  Google Scholar 

  37. S.T. Kimmins and D.J. Gooch: Met. Sci., 1983, vol. 17, pp. 519–32.

    Article  Google Scholar 

  38. I. Lischewski, D. M. Kirch, A. Ziemons, and G. Gottstein: Applications of Texture Analysis, Wiley, Hoboken, NJ, 2008, pp. 95–102.

    Book  Google Scholar 

  39. I.L. Dillamore, J.G. Roberts, and A.C. Bush: Met. Sci., 1979, vol. 13, pp. 73–7.

    Article  Google Scholar 

  40. S.L. Semiatin and J.J. Jonas: Formability and Workability of Metals: Plastic Instability and Flow Localization, ASM, Metals Park, OH, 1984, p. 299.

    Google Scholar 

  41. M. Li and A. Chandra: J. Mater. Process. Technol., 1999, vol. 96, pp. 133–38.

    Article  Google Scholar 

  42. M. Kuroda and V. Tvergaard: Int. J. Plasticity, 2007, vol. 23, pp. 244–72.

    Article  Google Scholar 

  43. D.V. Wilson: Proc. Conf. Effect of second-phase particles on the mechanical properties of steel, 1971, London, UK, pp. 28–36.

  44. J.C. Herman, A. De Paepe, and V. Leroy: Proc. 2nd Int. Conf. “Thermomechanical Processing of Steels and Other Materials-THERMEC’97, 1997, University of Wollongong, Australia, pp. 507–17.

  45. S. Hashimoto, T. Yakushiji, T. Kashima, and K. Hosami: Proc. Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, 1988, Tokyo, Japan, vol. 2, pp. 652.

Download references

Acknowledgments

Financial support of the Finnish Funding Agency for Technology and Innovation (Tekes) is gratefully acknowledged in the Light and Efficient Solutions Program (LIGHT) of the Finnish Metals and Engineering Competence Cluster Ltd (FIMECC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Juhani Kaijalainen.

Additional information

Manuscript submitted July 1, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaijalainen, A.J., Suikkanen, P., Karjalainen, L.P. et al. Effect of Austenite Pancaking on the Microstructure, Texture, and Bendability of an Ultrahigh-Strength Strip Steel. Metall Mater Trans A 45, 1273–1283 (2014). https://doi.org/10.1007/s11661-013-2062-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2062-7

Keywords

Navigation