Skip to main content
Log in

Delaminations by Cleavage Cracking in Duplex Stainless Steels at Sub-zero Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Impact toughness testing was conducted on 10 and 30 mm plates of 2205 together with a 30 mm plate of LDX 2101® duplex stainless steel (DSS). The testing temperatures were between 153 K (−120 °C) and room temperature. Interrupted fracture toughness tests of the 10 mm plate and a 50 mm plate of 2205 were also performed. The conclusion from the fractographic investigation was that the delaminations that occur in hot-rolled DSSs were cleavage fractures. The toughness anisotropy can be explained by the cleavage fracture and the appearance of the microstructure. The result from the interrupted fracture toughness test revealed that the delaminations initiated prior to the maximum force plateau and propagated ahead of the stable crack growth during testing. Estimated upper limit for the fracture delamination initiation toughness at sub-zero temperatures for the 2205 base metal according to the crack-tip opening displacement method was 28 to 61 μm for the 10 mm plate, 70 to 106 μm for the 30 mm plate and below 100 μm for the 50 mm plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. N. Gunn, Duplex stainless steels—microstructure, properties and applications, pp. 14, 175-84, Woodhead Publishing Ltd, Abington, MA, 2003.

    Google Scholar 

  2. H. Sieurin, R. Sandström, Eng. Fract. Mech., 2006, vol. 73, pp. 377-90.

    Article  Google Scholar 

  3. H. Sieurin, R. Sandström, M. E. Westin, Metall Mater. Trans. A, 2006, vol. 37A, pp. 2975-81.

    Article  Google Scholar 

  4. J. T. Marrow, O. A. Humphreys, M. Strangwood, Fatigue Fract. Eng. Mater. Struct., 1997, vol. 20, pp. 1005-14.

    Article  Google Scholar 

  5. S.A. Nilsson: Report No. IM-2551, Swedish Institute for Metals Research, can be ordered at www.swerea.se, Stockholm, Sweden, February 1992.

  6. J. Pilhagen, R. Sandström, Eng. Fract. Mech., 2013, vol. 99, pp. 239-50.

    Article  Google Scholar 

  7. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley, New York, NY, 1996, p. 64, 391.

    Google Scholar 

  8. H. Yoshida, K. Miyata, Y. Hayashi, M. Narui, H. Kayano, J. Nucl. Mater., 1985, vol. 133&134, pp. 317-20.

    Article  Google Scholar 

  9. A. Pegoretti, I. Cristelli, C. Migliaresi, Compos. Sci. Technol., 2008, vol. 68, pp. 2653-62.

    Article  Google Scholar 

  10. G. Straffelini, A. Molinari, F. Bonollo, A. Tiziani, Mater. Sci. Technol., 2001, vol. 17, pp. 1391-97.

    Article  Google Scholar 

  11. E. M. Westin, B. Brolund, S. Hertzman, Steel Res. Int., 2008, vol. 79, no. 6, pp. 473-81.

    Google Scholar 

  12. ASTM E 1290-02: Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement, vol. 03.01, 2007.

  13. A.F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, ASM International, Materials Park, OH, 2005, pp. 71.

    Google Scholar 

  14. D. E. Passoja, D. C. Hill, Metall. Trans., 1974, vol. 5, pp. 1851-54.

    Article  Google Scholar 

  15. P. Hedström, F. Huyan, J. Zhou, S. Wessman, M. Thuvander, J. Odqvist, Mat. Sci. Eng. A, 2013, vol. 574, pp. 123-29.

    Article  Google Scholar 

  16. W. B. Hutchinson, K. Ushioda, G. Runnsö., Mater. Sci. Technol., 1985, vol. 1, pp. 728-31.

    Google Scholar 

  17. R. Dakhlaoui, C. Braham, A. Baczmanski, Mater. Sci. Eng. A, 2007, vol. 444, pp. 6-17.

    Article  Google Scholar 

  18. P. Bowen, S. G. Druce, J. F. Knott, Acta metal, 1987, vol. 35, no. 5, pp. 1735-46.

    Article  Google Scholar 

  19. P. Joly, A. Pineau, Scand. J. Metall., 1995, vol. 24, pp. 226-36.

    Google Scholar 

  20. J. He, G. Han, S. Fukuyama, K. Yokogawa, Mater. Sci. Technol., 1999, vol. 15, pp. 909-20.

    Article  Google Scholar 

  21. K. L. Weng, H. R. Chen, J. R. Yang, Mater. Sci. Eng., A, 2004, vol. 379, pp. 119-32.

    Article  Google Scholar 

  22. B. Verhaeghe, F. Louchet, Y. Bréchet, J-P. Massoud, Acta mater, 1997, vol. 45, no. 5, pp. 1811-19.

    Article  Google Scholar 

  23. W. Jolley, Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 306-14.

    Google Scholar 

  24. S. Floreen, H. W. Hayden, T. M. Devine, Metall. Trans., 1971, vol. 2, pp. 1403-06.

    Google Scholar 

  25. A. G. Kostryzhev, R. B. Punch, C. L. Davis, M. Strangwood, Mater. Sci. Technol., 2012, vol. 28, no. 2, pp. 240-42.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the VINN Excellence Center Hero-M and Outokumpu Stainless AB for financing this study. Outokumpu Stainless AB is also gratefully acknowledged for delivering the material and conducting the impact toughness testing. Valuable support from Mikael Johansson at Outokumpu Avesta Research Centre is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Pilhagen.

Additional information

Manuscript submitted September 15, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilhagen, J., Sandström, R. Delaminations by Cleavage Cracking in Duplex Stainless Steels at Sub-zero Temperatures. Metall Mater Trans A 45, 1327–1337 (2014). https://doi.org/10.1007/s11661-013-2055-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2055-6

Keywords

Navigation