Skip to main content
Log in

Improvement of Fatigue Resistance and Fracture Toughness of Thermally Aged Duplex Stainless Steel by Laser Shock Peening

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Duplex stainless steels (DSSs) offer high strength compared to common austenitic stainless steels; however, when this steel type is exposed to high temperature, the precipitation of sigma phase due to its fast formation kinetics may affect significantly the mechanical properties of the alloy. In this research, the feasibility of using laser shock peening (LSP) to reduce the negative effects of sigma phase precipitation on the mechanical properties of samples with thermal aging is studied. The LSP treatment was performed using a Nd:YAG pulsed laser operating at 10 Hz. The LSP setup was the waterjet arrangement without sample coating. The tensile, yield strength, fatigue crack growth, fracture toughness and hardness of samples aged at 750 °C for different holding times were determined. In order to assess the effect of LSP on fatigue crack growth and fracture behavior, another set of thermally aged compact tension specimens with pre-crack was LSP-treated on both faces and then fatigue loading was applied. Experimental results demonstrate that, while thermal aging accelerates fatigue crack growth of DSS samples, LSP significantly reduces the effect of thermal aging, by reducing the fatigue crack growth rate and increasing the fracture toughness of DSS aged samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Hättestrand et al., Study of Decomposition of Ferrite in a Duplex Stainless Steel Cold Worked and Aged at 450–500 °C, Mater. Sci. Eng., A, 2009, 499(1–2), p 489–492

    Article  Google Scholar 

  2. K.L. Weng, H.R. Chen, and J.R. Yang, The Low-Temperature Aging Embrittlement in a 2205 Duplex Stainless Steel, Mater. Sci. Eng., A, 2004, 379(1–2), p 119–132

    Article  Google Scholar 

  3. I. Alvarez-Armas and S. Degallaix-Moreuil, Ed., Duplex Stainless Steels, Wiley, Hoboken, 2009

    Google Scholar 

  4. J. Charles, Duplex Stainless steels—a Review After DSS’07 Held in Grado Steel Research International 79(6), pp 455–465

  5. J.W. Elmer, T.A. Palmer, and E.D. Specht, In situ Observations of Sigma Phase Dissolution in 2205 Duplex Stainless Steel Using Synchrotron X-ray Diffraction, Mater. Sci. Eng., A, 2007, 459(1–2), p 151–155

    Article  Google Scholar 

  6. K. Unnikrishnan and A.K. Mallik, Microstructure—Strength Relations in a Duplex Stainless Steel, Mater. Sci. Eng., 1987, 94, p 175–181

    Article  CAS  Google Scholar 

  7. D.M. Escriba et al., Chi-Phase Precipitation in a Duplex Stainless Steel, Mater. Charact., 2009, 60(11), p 1214–1219

    Article  CAS  Google Scholar 

  8. M. Tane et al., Elastic Property of Aged Duplex Stainless Steel, Scr. Mater., 2003, 48(3), p 229–234

    Article  CAS  Google Scholar 

  9. R.N. Gunn, Duplex stainless steels, Microstructure, Properties and Applications, R.N. Gunn, Ed., Abington, Cambridge, 1997,

    Google Scholar 

  10. W. Małgorzata, R. Wiktoria, K. Joanna, and C. Krzysztof, Sigma Phase Precipitations in Duplex Steel SAF 2205, Solid State Phenom., 2013, 203–204, p 355–360

    Google Scholar 

  11. C. Gennari, L. Pezzato, E. Piva, R. Gobbo, and I. Calliari, Influence of Small Amount and Different Morphology of Secondary Phases on Impact Toughness of UNS S32205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2018, 729(2018), p 149–156

    Article  CAS  Google Scholar 

  12. N. Llorca-Isern, H. López-Luque, I. López-Jiménez, and M. Victoria Biezma, Identification of sigma and Chi Phases in Duplex Stainless Steels, Mater. Charact., 2016, 112, p 20–29

    Article  CAS  Google Scholar 

  13. B. Raha, Study on Deleterious Phases Precipitation on Super Duplex Stainless Steel Grade 6A- ASTM A890, Mater. Today: Proc., 2018, 5, p 7836–7844

    CAS  Google Scholar 

  14. S. Hereñu, M. Sennour, M. Balbi, I. Alvarez-Armas, A. Thorel, and A.F. Armas, Influence Of Dislocation Glide on the Spinodal Decomposition of Fatigues Duplex Stainless Steels, Mater. Sci. Eng., A, 2011, 528, p 7636–7640

    Article  Google Scholar 

  15. G. Gutierrez-Vargas, V.H. Lopez, H. Carreon, J.Y. Kim, and A. Ruiz, ACPD detection and evaluation of 475°C embrittlement of aged 2507 super duplex stainless steels, in 43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, vol. 36

  16. P. Peyre and R. Fabbro, Laser Shock Processing: A Review of the Physics and Applications, Opt. Quant. Electron., 1995, 27, p 1213–1229

    CAS  Google Scholar 

  17. C. Rubio-González, J.L. Ocaña, G. Gomez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, Effect of Laser Shock Processing on Fatigue Crack Growth and Fracture Toughness of 6061-T6 Aluminum Alloy Fracture Toughness of 6061-T6 Aluminum Alloy, Mater. Sci. Eng., A, 2004, 386, p 291–295

    Article  Google Scholar 

  18. C. Rubio-González, C. Felix-Martinez, G. Gomez-Rosas, J.L. Ocaña, M. Morales, and J. Porro, Effect of Laser Shock Processing on Fatigue Crack Growth of Duplex Stainless Steel, Mater. Sci. Eng., A, 2011, 528, p 914–919

    Article  Google Scholar 

  19. L. Spadaro, G. Gomez-Rosas, C. Rubio-Gonzalez, R. Bolmaro, A. Chavez-Chavez, and S. Hereñu, Fatigue Behavior of Superferritic Stainless Steel Laser Shock Treated Without Protective Coating, Opt. Laser Technol., 2017, 93, p 208–215

    Article  CAS  Google Scholar 

  20. V. Granados-Alejo, C. Rubio-González, C.A. Vázquez-Jiménez, J.A. Banderas, and G. Gómez-Rosas, Influence of Specimen Thickness on the Fatigue Behavior of Notched Steel Plates Subjected to Laser Shock Peening, Opt. Laser Technol., 2018, 101, p 531–544

    Article  CAS  Google Scholar 

  21. C.A. Vázquez Jiménez, G. Gómez Rosas, C. Rubio González, and S. Hereñú, Effect of Laser Shock Processing on fatigue life of 2205 Duplex Stainless Steel Notched Specimens, Opt. Laser Technol., 2017, 907, p 308–315

    Article  Google Scholar 

  22. T.L. Anderson, Fracture mechanics, fundamentals and applications, CRC Press, Boca Raton, 2005

    Book  Google Scholar 

  23. ASTM, Annual Book of ASTM Standards, No. E399-17, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials

  24. ASTM 2002, Annual book of ASTM Standards, No. E837-13a Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gauge Method

  25. I. Tomov, Effective Depth of X-Ray Penetration and Its Orientation Dependence, X-Ray and Neutron Structure Analysis in Materials Science, J. Hašek, Ed., Springer, US, Boston, MA, 1989, p 215–221

    Chapter  Google Scholar 

  26. D. Karthik and S. Swapoop, Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI, 321 steel, J. Mater. Eng. Perform., 2016, 25, p 2642–2650. https://doi.org/10.1007/s11665-016-2158-5

    Article  CAS  Google Scholar 

  27. C.A. Vázquez-Jiménez, R. Strubbia, G. Gómez Rosas, C. Rubio González, and S. Hereñú, Fatigue Life Rationalization of laser Shock Peened SAF 2205 with Different Swept Direction, Opt. Laser Technol., 2019, 111(2019), p 789–796

    Article  Google Scholar 

  28. H. Sieurin and R. Sandström, Sigma Phase Precipitation in Duplex Stainless Steel 2205, Mater. Sci. Eng., A, 2007, 444, p 271–276

    Article  Google Scholar 

  29. J.W. Elmer, T.A. Palmer, and E.D. Specht, In situ Observations of Sigma Phase Dissolution in 2205 Duplex Stainless Steel Using Synchrotron X-ray Diffraction, Mater. Sci. Eng., A, 2007, 459, p 151–155

    Article  Google Scholar 

  30. C.A. Vázquez-Jiménez, Efecto del LSP en la resistencia a la fatiga del acero inoxidable dúplex 2205 con geometrías concentradoras de esfuerzos (LSP effect on fatigue strength of 2205 duplex stainless steel with stress concentrators), Ph.D. Thesis, University of Guadalajara, Mexico (2018).

  31. O. Hatamleh, A Comprehensive Investigation on the Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welded AA 2195 Joints, Int. J. Fatigue, 2009, 31–5, p 974–988

    Article  Google Scholar 

  32. D. Karthik, S. Kalainathan, and S. Swaroop, Surface modification of 17-4 PH Stainless Steel by Laser Peening Without Protective Coating Process, Surf. Coat. Technol., 2015, 278, p 138–145

    Article  CAS  Google Scholar 

  33. P. Peyre, C. Carboni, P. Forget, G. Beranger, C. Lemaitre, and D. Stuart, Influence of Thermal and Mechanical Surface Modifications Induced by Laser Shock Processing on the Initiation of Corrosion Pits in 316L Stainless Steel, Journal of materials science, 2007, 42, p 6866–6877

    Article  CAS  Google Scholar 

  34. M.T. Todinov, Generic solutions for reducing the likelihood of overstress and wearout failures, in Risk-Based Reliability Analysis and Generic Principles for Risk Reduction, Elsevier 2007; doi:10.1016/B978-008044728-5/50013-5

    Chapter  Google Scholar 

  35. G. Argandona, M.V. Biezma, J.M. Berrueta, C. Berlanga, and A. Ruiz, Detection of Secondary Phases in UNS S32760 Superduplex Stainless Steel by Destructive and Non-destructive Techniques, J. Mater. Eng. Perform., 2016, 25, p 5269–5279

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rubio-González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-González, C., Ruiz, A., Granados-Alejo, V. et al. Improvement of Fatigue Resistance and Fracture Toughness of Thermally Aged Duplex Stainless Steel by Laser Shock Peening. J. of Materi Eng and Perform 29, 53–65 (2020). https://doi.org/10.1007/s11665-019-04518-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04518-w

Keywords

Navigation