Skip to main content

Advertisement

Log in

In-Situ Synchrotron Diffraction Studies on Transformation Strain Development in a High Strength Quenched and Tempered Structural Steel—Part I. Bainitic Transformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In-situ phase transformation behavior of a high strength (830 MPa yield stress) quenched and tempered S690QL1 (Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt pct)) structural steel during continuous cooling under different mechanical loading conditions has been studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the phase fractions and lattice parameters of the phases during heating and cooling cycles under different loading conditions. In addition to the thermal expansion behavior, the effects of the applied stress on the elastic strains during the formation of bainite from austenite and the effect of carbon on the lattice parameter of bainitic ferrite were calculated. The results show that small tensile stresses applied at the transformation temperature do not change the kinetics of the phase transformation. The start temperature for the bainitic transformation decreases upon increasing the applied tensile stress. The elastic strains increase with increase in the applied tensile stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. NEN-EN 10025-6, Technical report November, 2004.

  2. Blond R, Jimenez-Melero E, Zhao L,Wright JP, Brck E, van der Zwaag S, van Dijk NH (2012) Acta Materialia 60(2):565–577

    Article  Google Scholar 

  3. Blond R, Jimenez-Melero E, van Dijk NH, Brck E, Zhao L, Sietsma J, van der Zwaag S (2011) Diffusion and Defect Data PtB: Solid State Phenomena 172(174):196–201

    Google Scholar 

  4. Offerman SE, van Dijk NH, Sietsma J, Lauridsen EM, Margulies L, Grigull S, Poulsen HF, van der Zwaag S (2006) Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 246(1):194–200

    Article  Google Scholar 

  5. Offerman SE, van Dijk NH, Sietsma J, Grigull S, Lauridsen EM, Margulies L, Poulsen HF, Rekveldt MT, van der Zwaag S (2002) Science 298(5595):1003–1005

    Article  Google Scholar 

  6. Dai H, Francis JA, Stone HJ, Bhadeshia HKDH, Withers PJ (2008) Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 39(13):3070–3078

    Article  Google Scholar 

  7. Stone HJ, Bhadeshia HKDH, Withers PJ (2008) Materials Science Forum 571(572):393–398

    Article  Google Scholar 

  8. Taleb L, Cavallo N, Waeckel F (2001) International Journal of Plasticity 17:1–20

    Article  Google Scholar 

  9. Bhadeshia HKDH (2004) Materials Science and Engineering A 378(1-2 SPEC ISS.):34–39

    Article  Google Scholar 

  10. Withers PJ, Bhadeshia HKDH (2001). Materials Science and Technology 17(4):366–375

    Article  Google Scholar 

  11. Dutta RK, Amirthalingam M, Hermans MJM, Richardson IM (2013) Materials Science and Engineering A 559:86–95

    Article  Google Scholar 

  12. Dutta RK, Huizenga RM, Amirthalingam M, Hermans MJM, King A, Richardson IM (2013) Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 44(9):4011–4014

    Article  Google Scholar 

  13. J.C. Labiche, O. Mathon, S. Pascarelli, M.A. Newton, G.G. Ferre, C. Curfs, G. Vaughan, A. Homs, and D.F. Carreiras: Rev. Sci. Instrum., 2007, vol. 78 (9), p. 091301.

  14. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Husermann D (1996) High Pressure Research 14(4-5):235–248

    Article  Google Scholar 

  15. van Dijk NH, Butt AM, Zhao L, Sietsma J, Offerman SE, Wright JP, van der Zwaag S (2005) Acta Materialia 53(20):5439–5447

    Article  Google Scholar 

  16. van Bohemen SMC, Sietsma J (2008) International Journal of Materials Research 99(7):739–747

    Article  Google Scholar 

  17. van Bohemen SMC (2010) Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 41(2):285–296

    Article  Google Scholar 

  18. Pati SR, Cohen M (1969) . Acta. Metall.. Mater.. 17(3):189–199

    Article  Google Scholar 

  19. van Bohemen SMC, Sietsma J (2010) Materials Science and Engineering A 527(24-25):6672–6676

    Article  Google Scholar 

  20. Chester NA, Bhadeshia HKDH (1997) J Phys IV 7:41–46

    Google Scholar 

  21. van Bohemen SMC, Sietsma J (2009) Materials Science and Technology 25(8):1009–1012

    Article  Google Scholar 

  22. Bhadeshia HKDH (1981) Metal Science 15(4):175–177

    Article  Google Scholar 

  23. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., The Institute of Materials, London, 2001.

  24. Koistinen DP, Marburger RE (1959) Acta Metallurgica 7(1):59–60

    Article  Google Scholar 

  25. Babu SS, Specht ED, David SA, Karapetrova E, Zschack P, Peet M, Bhadeshia HKDH (2005) Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 36(12):3281–3289

    Article  Google Scholar 

  26. Dyson DJ, Holmes B (1970) J Iron Steel Inst (London) 208(pt 5):469–74

    Google Scholar 

  27. Bhadeshia HKDH, David SA, Vitek JM, Reed RW (1991) Materials Science and Technology 7(8):686–698

    Article  Google Scholar 

  28. M. Amirthalingam, M.J.M. Hermans, R.M. Huizenga, S.E. Offerman, J. Sietsma, and I.M. Richardson: in In-Situ Studies with Photons, Neutrons and Electrons Scattering, T. Kannengiesser, S.S. Babu, Y. Komizo, A.J. Ramirez, eds., Springer, Berlin. ISBN 978-3-642-14793-7, 2010, pp. 133–48

  29. Amirthalingam M, Hermans MJM, Zhao L, Richardson IM (2010) Metallurgical and Materials Transactions A 41:431–439

    Article  Google Scholar 

  30. Barabash OM, Babu SS, David SA, Vitek JM, Barabash RI (2003) Journal of Applied Physics 94(1):738–742

    Article  Google Scholar 

  31. de Cooman BC (2004) Current Opinion in Solid State and Materials Science 8(34):285–303

    Article  Google Scholar 

  32. Wang J, van der Zwaag S (2001) Metallurgical and Materials Transactions A 32:1527–1539

    Article  Google Scholar 

  33. Rees GI, Bhadeshia HKDH (1992) . Materials Science and Technology 8(11):985–993

    Article  Google Scholar 

  34. N. Luzginova: Ph.D. Thesis, Delft University of Technology, 2008.

  35. Coret M, Calloch S, Combescure A (2002) International Journal of Plasticity 18:1707–1727

    Article  Google Scholar 

  36. Gautier E, Denis S, Liebaut C, Sjostrom S (1994) Journal De Physique IV : JP 4(3):279–284

    Google Scholar 

Download references

Acknowledgments

This research is carried out under Project No. M32.8.09333 in the framework of the Research Program of the Materials innovation institute M2i http://www.m2i.nl. The authors thank Allseas Engineering by for providing the financial support for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Dutta.

Additional information

Manuscript submitted May 29, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, R.K., Huizenga, R.M., Amirthalingam, M. et al. In-Situ Synchrotron Diffraction Studies on Transformation Strain Development in a High Strength Quenched and Tempered Structural Steel—Part I. Bainitic Transformation. Metall Mater Trans A 45, 218–229 (2014). https://doi.org/10.1007/s11661-013-1992-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1992-4

Keywords

Navigation