Skip to main content
Log in

Study of Metallic Carbide (MC) in a Ni-Co-Cr-Based Powder Metallurgy Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of carbides in a Ni-Cr-Co-based powder metallurgy (PM) superalloy in the as-atomized, as-atomized + annealed, hot isostatic pressed (HIPed) and HIPed + annealed conditions were systematically analyzed to understand the formation of blocky metallic carbide (MC) along the previous particle boundary (PPB). The results show that the carbides both on the powder surfaces and in the bulk of the powder particles are mainly fan-shaped MC whose decomposition temperatures are in the range of 1473 K to 1493 K (1200 °C to 1220 °C). PPB carbides in the HIPed alloy are mainly block-shaped MC, and the fan-shaped MC densely distributed in the area that have not been consumed by the recrystallized grains. The formation mechanism of PPB carbides can be described as follows: When the powders are HIPed at 1453 K (1180 °C), the fan-shaped carbides are decomposed at the migrating boundaries of recrystallized grains, and the preferential precipitation of block-shaped MC at PPB is promoted by the carbide-forming elements released by the fan-shaped carbides. When the HIPed alloy is annealed at 1453 K (1180 °C), the area fraction of PPB carbides increases with an increase in annealing time but that of the fan-shaped carbides exhibits opposite behavior. This proves the above formation mechanism of PPB carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.G. Ingesten, R. Warren, and L. Winberg: High Temperature Alloys for Gas Turbines 1982, R. Brunetaud, S.D. Cout, T.B. Gibbons, Y. Lindblom, D.B. Meadowcr, and R. Stickler, eds., D Reidel Publishing Company, Boston, MA, 1982, pp. 1013–27.

  2. S.L. Semiatin, K.E. Mcclary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, and T.P. Gabb: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1649-61.

    Article  Google Scholar 

  3. J. Radavich, T. Carneiro, D. Furrer, and J. Lemsky: Superalloys 2008, R.C. Reed, K.A. Green, and P. Caron, eds., TMS, Warrendale, PA, 2002, pp. 63–72.

  4. G. Raisson, J.Y. Guédou, D. Guichard, and J.M. Rongvaux: Adv. Mater. Res., 1981, vol. 278, pp. 277-82.

    Article  Google Scholar 

  5. G.A. Rao, M. Srinivas, and D.S. Sarma: Mater. Sci. Technol., 2004, vol. 20, pp. 1161-70.

    Article  Google Scholar 

  6. J.S. Crompton and R.W. Hertzberg: J. Mater. Sci., 1986, vol. 21, pp. 3445-54.

    Article  Google Scholar 

  7. G.A. Rao, M. Srinivas, and D.S. Sarma: Mater. Sci. Eng. A, 2006, vol. 418, pp. 282-91.

    Article  Google Scholar 

  8. M. Dahlen, N.G. Ingesten, and H. Fischmeister: Modern Developments in Powder Metallurgy Proceedings, H.H. Hausner, ed., Plenum Press, New York, NY, 1981, pp. 3–14.

  9. R.G. Menzies, R.H. Bricknell, and A.J. Craven: Philos. Mag. A, 1980, vol. 41 pp. 493-508.

    Article  Google Scholar 

  10. V. Robert and J. Miner: Metall. Trans. A, 1977, vol. 8A, pp. 259-63.

    Google Scholar 

  11. Y.Q. Ning, Z.K. Yao, H. Li, H.Z. Guo, Y. Tao, and Y.W. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 961-66.

    Article  Google Scholar 

  12. L. Zhang, H.S. Liu, X.B. He, R.U. Ding, and X.H. Qu: Mater. Charact., 2012, vol. 67, pp. 52-64.

    Article  Google Scholar 

  13. Y.Q. Ning, Z.K. Yao, M.W. Fu, H. Li, and X. Xie: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8065-70.

    Article  Google Scholar 

  14. Y.Q. Ning and Z.K. Yao: Acta Metall. Sin., 2012, vol. 48, pp. 1005-10.

    Google Scholar 

  15. M.J. Zhang, F.G. Li, S.Y. Wang, and C.Y. Liu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4030-39.

    Article  Google Scholar 

  16. N. Liu, Z. Li, G.Q. Zhang, H. Yuan, W.Y. Xiu, and Y. Zhang: Chin. J. Rare Met., 2011, vol. 35, pp. 481-85.

    Google Scholar 

  17. R.E. Waters, J.A. Charles, and C. Lea: Metall. Technol., 1981, vol. 5, pp. 194-200.

    Article  Google Scholar 

  18. H.C. Swart, A.J. Jonker, C.H. Claassens, R. Chen, L.A. Venter, P. Ramoshebe, E. Wurth, J.J. Terblans, and W.D. Roos: Appl. Surf. Sci., 2003, vol. 205, pp. 231-39.

    Article  Google Scholar 

  19. K.D. Childs, B.A. Carlson, L.A. Lavanier, J.F. Moulder, D.F. Paul, W.F. Stickel, and D.G. Watson: Hand Book of Auger Electron Spectroscopy: A Book of Reference Data for Identification in Auger Electron Spectroscopy, C.L. Hedberg, ed., Physical Electronics Inter-corporation, Chanhassen, MN, 1995, pp. 69–70.

  20. A.M. Ritter and M.F. Henry: J. Mater. Sci., 1982, vol. 17, pp. 73-80.

    Article  Google Scholar 

  21. K. Wu, G.Q. Liu, B.F. Hu, F. Li, Y.W. Zhang, Y. Tao, and J.T. Liu: Mater. Charact., 2012, vol. 73 pp. 68-76.

    Article  Google Scholar 

  22. J.X. Yang, Q. Zheng, X.F. Sun, H.G. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2006, vol. 429, pp. 341-47.

    Article  Google Scholar 

  23. E.J. Lavernia and T.S. Srivatsan: J. Mater. Sci., 2010, vol. 45, pp. 287-96.

    Article  Google Scholar 

  24. J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, and Z.Q. Hu: J. Mater. Sci., 2006, vol. 41, pp. 6476-82.

    Article  Google Scholar 

  25. W.R. Sun, J.H. Lee, S.M. Seo, S.J. Choe, and Z.Q. Hu: Mater. Sci. Eng. A, 1999, vol. 271, pp. 143-49.

    Article  Google Scholar 

  26. H.M. Wang, J.H. Zhang, and Z.Q. Hu: Mater. Sci. Eng. A, 1992, vol. 156, p. 109.

    Article  Google Scholar 

  27. W.H. Jiang, X.D. Yao, H.R. Guan, and Z.Q. Hu: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 513-20.

    Article  Google Scholar 

  28. H.V. Atkinson and S. Davies: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2981-3000.

    Article  Google Scholar 

  29. J. Jia, Y. Tao, Y.W. Zhang, and Y. Zhang: J. Aeronaut. Mater., 2008, vol. 28, pp. 20-23.

    Google Scholar 

  30. J.C. Xiong, J.R. Li, S.Z. Liu, J.Q. Zhao, and M. Han: Mater. Charact., 2010, vol. 61 pp. 749-55.

    Article  Google Scholar 

  31. S. Xu, J.I. Dickson, and A.K. Koul: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2687-95.

    Article  Google Scholar 

  32. L. Wang, G. Xie, J. Zhang, and L.H. Lou: Scripta Mater., 2006, vol. 55 p. 457.

    Article  Google Scholar 

  33. C.L. Qiu, M.M. Attallah, X.H. Wu, and P. Andrews: Mater. Sci. Eng. A, 2013, vol. 564, pp. 176-85.

    Article  Google Scholar 

  34. W.B. Ma, G.Q. Liu, B.F. Hu, Y.W. Zhang, and J.T. Liu: Mater. Sci. Eng. A. 2013. DOI:10.1016/j.msea.2013.05.015.

  35. Y.W. Zhang: Ph.D. Dissertation, University of Science and Technology Beijing, Beijing, China, 2012.

  36. W.B. Hu: M.E. Thesis, University of Science and Technology Beijing, Beijing, China, 2012.

Download references

Acknowledgments

This research is partially funded by the National Basic Research Program of China (Grant No. 2010CB631204), the National Natural Science Foundation of China (Grant No. 51071019), and National High Technology Research and Development Program of China (Grant No. 2013AA031601). The authors would like to thank the Central Iron and Steel Research Institute for support of alloy manufacture and mechanical property testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Quan Liu.

Additional information

Manuscript submitted March 2, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, WB., Liu, GQ., Hu, BF. et al. Study of Metallic Carbide (MC) in a Ni-Co-Cr-Based Powder Metallurgy Superalloy. Metall Mater Trans A 45, 208–217 (2014). https://doi.org/10.1007/s11661-013-1962-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1962-x

Keywords

Navigation