Skip to main content
Log in

Distortion Analysis in the Manufacturing of Cold-Drawn and Induction-Hardened Components

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this investigation, a design of experiments analysis of distortion for a typical manufacturing process involving pre-straightening, cold drawing, and induction hardening of AISI 1045 cylindrical steel bars was carried out. A careful characterization of the material, including residual stress states and geometrical changes, was done for the different manufacturing steps. In order to identify effects and correlations on distortion behavior, the investigated variables included the batch influence, the combined drawing process itself with two different drawing angles and two different polishing and straightening (P.S.) angles, a stress relief treatment which was applied to a part of the samples, and finally induction hardening with two different surface hardening depths. Main and statistically significant effects on the distortion of the induction-hardened samples were found to be in this order: first, the interaction between the drawing angle and batch, then the interaction between drawing angles, and finally drawing angle and induction hardened layer. It was also found that the distortion potentials are transmitted from the drawing process to further manufacturing steps and, consequently, from one production site to the next.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AISI:

American Iron and Steel Institute

d 0 :

Interplanar spacing

DoE:

Design of experiments

IH:

Induction hardening

PAG:

Polyalkylene glycol

P.S.:

Polishing and straightening process

r :

Radius

RS:

Residual stress

SR:

Stress relief

XRD:

X-ray diffraction

SHD:

Surface hardening depth

α :

Statistical significance

α 1 :

Semi-die angle in wire drawing process

References

  1. F. Hoffmann, O. Kessler, T. Lubben and P. Mayr, Heat Treat Met-Uk 2004, vol. 31, pp. 27-30.

    Google Scholar 

  2. H. W. Zoch, Materialwiss Werkst 2012, vol. 43, pp. 9-15.

    Article  Google Scholar 

  3. K. D. Thoben, D. Klein, M. Seifert and T. Wuest, Materialwiss Werkst 2012, vol. 43, pp. 178-185.

    Article  Google Scholar 

  4. H. L. Yu, J. W. Kang and T. Y. Huang, Sci China Technol Sc 2011, vol. 54, pp. 81-87.

    Article  CAS  Google Scholar 

  5. H. W. Zoch, Materialwiss Werkst 2006, vol. 37, pp. 6-10.

    Article  Google Scholar 

  6. T. Kuboki, H. Yoshikawa, Y. Neishi, K. Kuroda and M. Akiyama, Ironmak Steelmak 2001, vol. 28, pp. 117-121.

    Article  CAS  Google Scholar 

  7. A. S. Rocha, R. M. Nunes and T. Hirsch, P I Mech Eng B-J Eng 2012, vol. 226, pp. 459-465.

    Article  CAS  Google Scholar 

  8. H. Surm, O. Kessler, F. Hoffmann and P. Mayr, Int J Mater Prod Tec 2005, vol. 24, pp. 270-281.

    Article  Google Scholar 

  9. F. Frerichs, D. Landek, T. Lubben, F. Hoffmann and H. W. Zoch, Materialwiss Werkst 2006, vol. 37, pp. 63-68.

    Article  CAS  Google Scholar 

  10. J. Epp, T. Hirsch, M. Hunkel and R. Wimpory, Mechanical Stress Evaluation by Neutrons and Synchrotron Radiation 2010, vol. 652, pp. 37-43.

    Article  Google Scholar 

  11. J. M. Atienza and M. Elices, Mater Struct 2004, vol. 37, pp. 301-304.

    CAS  Google Scholar 

  12. J. M. Atienza and M. Elices, Mater Struct 2003, vol. 36, pp. 548-552.

    CAS  Google Scholar 

  13. M. L. Martinez-Perez, F. J. Mompean, J. Ruiz-Hervias, C. R. Borlado, J. M. Atienza, M. Garcia-Hernandez, M. Elices, J. Gil-Sevillano, R. L. Peng and T. Buslaps, Acta Mater 2004, vol. 52, pp. 5303-5313.

    Article  CAS  Google Scholar 

  14. K. Tanaka and Y. Akiniwa, Jsme Int J a-Solid M 2004, vol. 47, pp. 252-263.

    Article  Google Scholar 

  15. T. Poeste, R.C. Wimpory, and R. Schneider: Mater. Sci. Forum, 2006, vol. 524–525, pp. 223–28.

  16. M. R. Ripoll, S. M. Weygand and H. Riedel, Mat Sci Eng a-Struct 2010, vol. 527, pp. 3064-3072.

    Article  Google Scholar 

  17. M. Moore, W. Evans, SAE Tech P 1958, vol. 66, pp. 340–345.

    Google Scholar 

  18. J. Epp and T. Hirsch, Materialwiss Werkst 2012, vol. 43, pp. 112-119.

    Article  CAS  Google Scholar 

  19. J. Epp, H. Surm, J. Kovac, T. Hirsch and F. Hoffmann, Metall Mater Trans A 2011, vol. 42A, pp. 1205-1214.

    Article  Google Scholar 

Download references

Acknowledgments

This work was developed in the frame of the “BRAGECRIM” program (Brazilian German Cooperation Research Initiative in Manufacturing). The authors are deeply indebted to the DFG, CAPES, CNPq, and Finep for financial support and to HZB Berlin (neutron diffraction measurements). Preliminary cooperation also would not have been possible without support from the DAAD and CAPES. The neutron diffraction analysis has been supported by the European Commission under the 7th Framework Program through the Key Action: Strengthening the European Research Area, Research Infrastructures: Contract No. 226507 (NIMI3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Menezes Nunes.

Additional information

Manuscript submitted February 15, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, T.G.K., da Silva Rocha, A. & Menezes Nunes, R. Distortion Analysis in the Manufacturing of Cold-Drawn and Induction-Hardened Components. Metall Mater Trans A 44, 5806–5816 (2013). https://doi.org/10.1007/s11661-013-1952-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1952-z

Keywords

Navigation