Skip to main content
Log in

Effect of Mn Substitution on Microstructure Evolution and Magnetic Phase Transition in La(Fe1−x Mn x )10.8Co0.7Si1.5 Compounds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influences of Mn substitution for Fe on microstructures of La(Fe1−x Mn x )10.8Co0.7Si1.5 (x = 0, 0.01, 0.02, 0.03) alloys in both the as-cast state and the annealed state have been studied. The results show that Mn substitution promotes the fining of the as-cast microstructure and increases the formation of 1:13 phase significantly when annealed. An almost single 1:13 phase is obtained for x = 0.01 when annealed at 1373 K (1100 °C) for 3 days, while a large amount of impurity phases is still present for x = 0. By increasing the amount of Mn to x = 0.02, a more purified annealed microstructure can be obtained. However, further substitution of Mn up to x = 0.03 is harmful for the formation of 1:13 phase. The Curie temperature T C of the annealed La(Fe1−x Mn x )10.8Co0.7Si1.5 (x = 0, 0.01, 0.02, 0.03) varies monotonously with Mn content x, decreasing from ~279 K (6 °C) for x = 0 to ~236 K (−37 °C) for x = 0.03. When x = 0.01, a higher maximum entropy change (−ΔS)max of 5.3 J/(kgK) and relative cooling power (RCP) of 166 J/kg can be obtained under a magnetic field of 2T. Further substitution of Mn (x = 0.02) results in a slight decrease of (−ΔS)max, whereas a larger RCP can still be kept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.A. Gschneidner, Jr. and V.K. Pecharsky: Int. J. Refrig., 2008, vol. 31, pp. 945-61.

    Article  Google Scholar 

  2. M. Balli, D. Frchart, O. Sari, D. Gignoux, J.H. Huang, J. Hu, and P.W. Egolf: J. Appl. Phys., 2009, vol. 106, pp. 023902:1–5.

  3. V.K. Pecharsky and K.A. Gschneidner, Jr.: J. Magn. Magn. Mater., 1997, vol. 167, pp. 179-84.

    Article  Google Scholar 

  4. W. Chen, W. Zhong, D.L. Hou, W.P. Ding, Y.W. Du, and Q.J. Yan: Chinese Phys. Lett., 1998, vol. 15, pp. 134-6.

    Article  CAS  Google Scholar 

  5. O. Tegus, E. Brück, K.H.J. Buschow, and F.R. De Boer: Nature, 2002, vol. 415, no. 10, pp. 150-2.

    Article  CAS  Google Scholar 

  6. H. Wada, T. Morikawa, K. Taniguchi, T. Shibata, Y. Yamada, and Y. Akishige: Physica B, 2003, vol. 328, pp. 114-6.

    Article  CAS  Google Scholar 

  7. I. Babita, M.M. Raja, R. Gopalan, V. Chandrasekaran, and S. Ram: J. Alloys Compd., 2007, vol. 432, pp, 23-9.

    Article  CAS  Google Scholar 

  8. A. Fujita, Y. Akamatsu, and K. Fukamichi: J. Appl. Phys., 1999, vol. 85, no. 8, pp. 4756-8.

    Article  CAS  Google Scholar 

  9. F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, and X.X. Zhang: Appl. Phys. Lett., 2001, vol. 78, no. 23, pp. 3675-7.

    Article  CAS  Google Scholar 

  10. W.H. Tang, J.K. Liang, G.H. Rao, and X.H Yan: Phys. Status Solidi (A), 1994, vol. 141, no. 1, pp. 217-22.

    Article  CAS  Google Scholar 

  11. J. Lyubina, O. Gutfleisch, M.D. Kuzmin, and M. Richter: J. Magn. Magn. Mater., 2008, vol. 320, pp. 2252-8.

    Article  CAS  Google Scholar 

  12. S. Fujieda, A. Fujita, and K. Fukamichi: Appl. Phys. Lett., 2002, vol. 81, no. 7, pp. 1276-8.

    Article  CAS  Google Scholar 

  13. F.X. Hu, B.G. Shen, J.R. Sun, and Z.H. Cheng: Appl. Phys. Lett., 2002, vol. 78, no. 23, pp. 3675-7.

    Article  Google Scholar 

  14. F.X. Hu, X.L. Qian, J.R. Sun, G.J. Wang, X.X. Zhang, Z.W. Cheng, and B.G. Shen: J. Appl. Phys., 2002, vol. 92, no. 7, pp. 3620-3.

    Article  CAS  Google Scholar 

  15. A.K. Pathak, P. Basnyat, and I. Dubenko: J. Magn. Magn. Mater., 2010, vol. 322, pp. 692-7.

    Article  CAS  Google Scholar 

  16. S. Sun, R.C. Ye, and Y. Long: Mater. Sci. Eng. B, 2013, vol. 178, no. 1, pp. 60-4.

    Article  CAS  Google Scholar 

  17. S. Fujieda, N. Kawamoto, A. Fujita, and K. Fukamichi: Mater. Trans., 2006, vol. 47, no. 3, pp. 482-5.

    Article  CAS  Google Scholar 

  18. F. Wang, Y.F. Chen, G.J. Wang, and B.G. Shen: J. Phys. D: Appl. Phys., 2003, vol. 36, pp. 1-3.

    Article  Google Scholar 

  19. F. Wang, J. Zhang, Y.F. Chen, G.J. Wang, J.R. Sun, S.Y. Zhang, and B.G. Shen: Phys. Rev. B, 2004, vol. 69, pp. 094424:1–4.

  20. B. Gao, F.X. Hu, J. Wang, J. Shen, J.R. Sun, and B.G. Shen: J. Appl. Phys., 2009, vol. 105, pp. 07A916:1–3.

  21. J. Shen, Y.D. Qiao, X.L. Yang, and J.R. Sun: J. Alloys Compd., 2008, vol. 458, pp. 115-8.

    Article  CAS  Google Scholar 

  22. B. Bao, P. Huang, B. Fu, P.J. Shi, Y. Long, Y.Q. Chang, and F.R. Wan: J. Magn. Magn. Mater., 2009, vol. 321, pp. 786-9.

    Article  CAS  Google Scholar 

  23. A. Fujita, S. Fujieda, and K. Fukamichi: J. Appl. Phys., 2006, vol. 99, pp. 08k910:1–3.

  24. A.S. Demuner, A.Y. Takeuchi, E.C. Passamani, J.R. Proveti, C. Larica, E.F. Nicolin, and A.M. Gomes: J. Magn. Magn. Mater., 2009, vol. 321, pp. 1809-13.

    Article  CAS  Google Scholar 

  25. Y.F. Chen, F. Wang, B.G. Shen, G.J. Wang, and J.R. Sun: J. Appl. Phys., 2003, vol. 93, 1323-5.

    Article  CAS  Google Scholar 

  26. S. Fujieda, A. Fujita, and K. Fukamichi: Appl. Phys. Lett., 2001, vol. 79, no. 5, pp. 653-5.

    Article  CAS  Google Scholar 

  27. X. Chen, Y.G. Chen, and Y.B. Tang: J. Alloys Compd., 2011, vol. 509, pp. 2864-89.

    Article  CAS  Google Scholar 

  28. A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi: Phys. Rev. B., 2003, vol. 67, pp. 104416:1–12.

  29. C.L.Wang, Y. Long, T. Ma, and H. Zhang: J. Rare Earth, 2011, vol. 29, pp. 474-6.

    Article  Google Scholar 

  30. A. Barcza, M. Katter, V. Zellmann, S. Russek, S. Jacobs, and C. Zimm: IEEE Trans. Magn., 2011, vol. 47, no.10, pp. 3391-4.

    Article  CAS  Google Scholar 

  31. S. Fujieda and A. Fujita: Appl. Phys. Lett., 2006, vol. 89, pp. 062504:1–3.

  32. K. Niitsu and R. Kainuma: Intermetallics, 2012, vol. 20, pp. 160-9.

    Article  CAS  Google Scholar 

  33. A. Fujita and H. Yako: Scripta Mater., 2012, vol. 67, pp. 578-83.

    Article  CAS  Google Scholar 

  34. J. Liu, M. Krautz, K. Skokov, T.G. Woodcock, and O. Gutfleisch: Acta Mater., 2011, vol. 59, pp. 3602-11.

    Article  CAS  Google Scholar 

  35. X. Chen, Y.G. Chen, and Y.B. Tang: J. Alloys Compd., 2011, vol. 509, no. 34, pp. 8534-41.

    Article  CAS  Google Scholar 

  36. X.B. Liu, Z. Altounian, and G.H. Tu: J. Phys. Condens. Matter., 2004, vol. 16, pp. 8043-51.

    Article  CAS  Google Scholar 

  37. K. Niitsu and R. Kainuma: Key Eng. Mater., 2012, vol. 508, pp. 172-7.

    Article  CAS  Google Scholar 

  38. Y.Q. Guo, J.K. Liang, X.H. Zhang, W.H. Tang, Y.M. Zhao, and G.H. Rao: J. Alloys Compd., 1997, vol. 257, pp. 69-74.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (Grant No. 2011AA03A404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongchang Ye.

Additional information

Manuscript submitted October 31, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Ye, R., Li, H. et al. Effect of Mn Substitution on Microstructure Evolution and Magnetic Phase Transition in La(Fe1−x Mn x )10.8Co0.7Si1.5 Compounds. Metall Mater Trans A 44, 5782–5787 (2013). https://doi.org/10.1007/s11661-013-1925-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1925-2

Keywords

Navigation