Skip to main content
Log in

Microstructural Evolution and Magnetocaloric Properties of Cold Plastically Deformed LaFe10.9Co0.7Si1.4 Compound

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To optimize the formation of the magnetocaloric 1:13 phase in La(Fe,Si)13-based compounds, a method to improve the preparation process and promote the practical application of magnetic refrigeration is proposed. The LaFe10.9Co0.7Si1.4 and LaFe13.1Co0.7Si1.4 samples were plastically deformed to different degrees by cold compression at room temperature. Subsequently, grain structure, phase composition, and magnetocaloric effects were systematically investigated. The results demonstrated that the pre-deformation process can effectively increase the number of grains per unit volume and homogenize the grain size. Using the same annealing temperature and time, the 1:13 phase in the pre-compressed samples was much higher than that in the uncompressed samples, whereas the compression deformation did not cause an uneven elemental distribution. Compared to LaFe13.1Co0.7Si1.4, the LaFe10.9Co0.7Si1.4 compound obtained by the same preparation process has a higher magnetocaloric phase ratio. After short annealing for 3 days, the Curie temperature (TC) of 40% pre-deformed LaFe10.9Co0.7Si1.4 sample reaches 303 K, and the magnetic entropy change of 5.30 and 10.55 J/kg K under 2 and 5 T magnetic fields is observed. The good magnetic refrigeration-related performance makes the 40% pre-deformed LaFe10.9Co0.7Si1.4 alloy a potential candidate for room temperature magnetic refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, and X.X. Zhang, Influence of Negative Lattice Expansion and Metamagnetic Transition on Magnetic Entropy Change in the Compound LaFe11.4Si1.6, Appl. Phys. Lett., 2001, 78, p 3675–3677. https://doi.org/10.1063/1.1375836

    Article  CAS  ADS  Google Scholar 

  2. J. Liu, C. He, M.X. Zhang, and A.R. Yan, A Systematic Study of the Microstructure, Phase Formation and Magnetocaloric Properties in Off-Stoichiometric La-Fe-Si Alloys, Acta Mater., 2016, 118, p 44–53. https://doi.org/10.1016/j.actamat.2016.07.039

    Article  CAS  ADS  Google Scholar 

  3. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, and A. Conde, Magnetocaloric Effect: From Materials Research to Refrigeration Devices, Prog. Mater. Sci., 2018, 93, p 112–232. https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  4. H. Wada, T. Morikawa, K. Taniguchi, T. Shibata, Y. Yamada, and Y. Akishige, Giant Magnetocal-oric Effect of MnAs1xSbx in the Vicinity of First-order Magnetic Transition, Physica B, 2003, 328(1–2), p 114–116. https://doi.org/10.1016/s0921-4526(02)01822-7

    Article  CAS  ADS  Google Scholar 

  5. W. Choe, V.K. Pecharsky, A.O. Pecharsky, K.A.J. Gschneidner, V.G.J. Young, and G.J. Miller, Making and Breaking Covalent Bonds Across the Magnetic Transition in the Giant Magnetocaloric Material Gd5(Si2Ge2), Phys. Rev. Lett, 2000, 84, p 4617–4620. https://doi.org/10.1103/PhysRevLett.84.4617

    Article  CAS  PubMed  ADS  Google Scholar 

  6. B.G. Shen, J.R. Su, F.X. Hu, H.W. Zhang, and Z.H. Cheng, Recent Progress in Exploring Magnetocaloric Materials, Adv. Mater., 2009, 21(45), p 4545–4564. https://doi.org/10.1002/adma.200901072

    Article  CAS  Google Scholar 

  7. K. Rudolph, A.K. Pathak, Y. Mudryk, and V.K. Pecharsky, Magnetostructural Phase Transitions and Magnetocaloric Effect in (Gd5−xScx)Si1.8Ge2.2, Acta Mater., 2018, 145, p 369–376. https://doi.org/10.1016/j.actamat.2017.12.024

    Article  CAS  ADS  Google Scholar 

  8. Y.K. Zhang, D. Guo, B.B. Wu, H.F. Wang, R.G. Guan, X. Li, and Z.M. Ren, Magnetic Properties and Magneto-Caloric Performances in RECo2B2C (RE=Gd, Tb and Dy) Compounds, J. Alloy. Compd., 2020, 817, p 152780. https://doi.org/10.1016/j.jallcom.2019.152780

    Article  CAS  Google Scholar 

  9. Y. Shao, B. Lu, M. Zhang, and J. Liu, An X-Ray Absorption Spectroscopy Study of La-Fe-Si-(H) Magnetocaloric Alloys, Acta Mater., 2018, 150, p 206–212. https://doi.org/10.1016/j.actamat.2018.03.006

    Article  CAS  ADS  Google Scholar 

  10. W.H. Tang, J.K. Liang, G.H. Rao, and X.H. Yan, Study of AC Susceptibility on the LaFe13−xSix System, Phys. Stat. Sol. (A), 1994, 141, p 217–222. https://doi.org/10.1002/pssa.2211410121

    Article  CAS  ADS  Google Scholar 

  11. A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, Itinerant-Electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1−x)13 Compounds and their Hydrides, Phys. Rev. B, 2003, 67, p 104416. https://doi.org/10.1103/PhysRevB.67.104416

    Article  CAS  ADS  Google Scholar 

  12. M. Balli, D. Fruchart, and D. Gignoux, Optimization of La(Fe, Co)13−xSix Based Compounds for Magnetic Refrigeration, J. Phys. Condens. Matter, 2007, 19, p 236230. https://doi.org/10.1088/0953-8984/19/23/236230

    Article  CAS  ADS  Google Scholar 

  13. Q. Wu, X.J. Wang, Z. Ding, and L.W. Li, Magnetic properties and tunable magneto-caloric effect in La0.8Ce0.2Fe11.5xCoxSi1.5C0.2 (x = 0.3, 0.5, 0.7) compounds, J. Magn. Magn. Mater., 2018 https://doi.org/10.1016/j.jmmm.2017.11.047

    Article  Google Scholar 

  14. S. Fujieda, A. Fujita, and K. Fukamichi, Enhancements of Magnetocaloric Effects in La(Fe0.90Si0.10)13 and Its Hydride by Partial Substitution of Ce for La, Mater. Trans, 2004, 45, p 3228–3231. https://doi.org/10.2320/matertrans.45.3228

    Article  CAS  Google Scholar 

  15. G.F. Eggert, C.S. Teixeira, L.U. Lopes, and P.A.P. Wendhausen, Feasibility of Nd Substitution in (La, Nd)(Fe, Si)13 Magnetocaloric Compound Obtained by the Reduction-Diffusion Process, Inst. Electr. Electron. Eng. Trans. Magn., 2016, 52, p 1–4. https://doi.org/10.1109/TMAG.2015.2512502

    Article  CAS  Google Scholar 

  16. J. Shen, B. Gao, L.Q. Yan, Y.X. Li, H.W. Zhang, F.X. Hu, and J.R. Sun, Magnetic Properties and Magnetic Entropy Changes of La1−xPrxFe11.5Si1.5 Compounds with 0≤x≤0.5, Chin. Phys, 2007, 16, p 3848–3852. https://doi.org/10.1088/1009-1963/16/12/049

    Article  CAS  Google Scholar 

  17. Y.F. Chen, F. Wang, B.G. Shen, J.R. Sun, G.J. Wang, F.X. Hu, Z.H. Cheng, and T. Zhu, Effects of Carbon on Magnetic Properties and Magnetic Entropy Change of the LaFe11.5Si1.5 Compound, J. Appl. Phys, 2003, 93, p 6981–6983. https://doi.org/10.1063/1.1558658

    Article  CAS  ADS  Google Scholar 

  18. B. Fu, Y. Long, P.J. Shi, T. Ma, B. Bao, A.R. Yan, and R.J. Chen, Hydrogen Absorption of LaFe11.5Si1.5 Compound Under Low Hydrogen Gas Pressure, Chin. Phys, 2009 https://doi.org/10.1088/1674-1056/18/10/067

    Article  Google Scholar 

  19. S.H. Xie, J.Q. Li, and Y.H. Zhuang, Influence of Boron on the Giant Magnetocaloric Effect of La(Fe0.9Si0.1)13, J. Magn. Magn. Mater, 2007, 311, p 589–593. https://doi.org/10.1016/j.jmmm.2006.08.021

    Article  CAS  ADS  Google Scholar 

  20. I.A. Radulov, D.Y. Karpenkov, K.P. Skokov, A.Y. Karpenkov, T. Braun, V. Brabänder, T. Gottschall, M. Pabst, B. Stoll, and O. Gutfleisch, Production and Properties of Metal Bonded La(Fe, Mn, Si)13Hx Composite Material, Acta Mater., 2017, 127, p 389–399. https://doi.org/10.1016/j.actamat.2017.01.054

    Article  CAS  ADS  Google Scholar 

  21. S. Wieland and F. Petzoldt, Powder-Extrusion and Sintering of Magnetocaloric LaCe(FeMnSi)13 Alloy, J. Alloy. Compd., 2017, 719, p 182–188. https://doi.org/10.1016/j.jallcom.2017.05.168

    Article  CAS  Google Scholar 

  22. J.D. Moore, D. Klemm, D. Lindackers, S. Grasemann, R. Träger, J. Eckert, L. Löber, S. Scudino, M. Katter, A. Barcza, K.P. Skokov, and O. Gutfleisch, Selective Laser Melting of La(Fe Co, Si)13 Geometries for Magnetic Refrigeration, J. Appl. Phys., 2013, 114(4), p 945. https://doi.org/10.1063/1.4816465

    Article  CAS  Google Scholar 

  23. H. Zhang, Y.J. Sun, Y.W. Li, Y.Y. Wu, Y. Long, J. Shen, F.X. Hu, J.R. Sun, and B.G. Shen, Mechanical Properties and Magnetocaloric Effects in La(Fe, Si)13 Hydrides Bonded with Different Epoxy Resins, J. Appl. Phys., 2015, 117(6), p 1759. https://doi.org/10.1063/1.4908018

    Article  CAS  Google Scholar 

  24. X. Lu, Y.F. Zhang, F.Q. Wang, M.X. Zhang, and J. Liu, On the Microstructural Evolution and Accelerated Magnetocaloric Phase Formation in La-Fe-Si Alloys by Hot Forging Deformation, Acta Mater., 2021, 221, p 117334. https://doi.org/10.1016/j.actamat.2021.117334

    Article  CAS  Google Scholar 

  25. K. Löwe, J. Liu, K. Skokov, J.D. Moore, H. Sepehri-Amin, K. Hono, M. Katter, and O. Gutfleisch, The Effect of the Thermal Decomposition Reaction on the Mechanical and Magnetocaloric Properties of La(Fe, Si, Co)13, Acta Mater., 2012, 60(10), p 4268–4276. https://doi.org/10.1016/j.actamat.2012.04.027

    Article  CAS  ADS  Google Scholar 

  26. O. Glushko, A. Funk, V. Maier-Kiener, P. Kraker, M. Krautz, J. Eckert, and A. Waske, Mechanical Properties of the Magnetocaloric Intermetallic LaFe11.2Si1.8 Alloy at Different Length Scales, Acta Mater., 2019, 165, p 45–50. https://doi.org/10.1016/j.actamat.2018.11.038

    Article  ADS  Google Scholar 

  27. Y. Ouyang, M.X. Zhang, A.R. Yan, W. Wang, F. Guillou, and J. Liu, Plastically Deformed La-Fe-Si: Microstructural Evolution, Magnetocaloric Effect and Anisotropic Thermal Conductivity, Acta Mater., 2020 https://doi.org/10.1016/j.actamat.2020.01.030

    Article  Google Scholar 

  28. F.X. Hu, J. Gao, X.L. Qian, M. Ilyn, A.M. Tishin, J.R. Sun, and B.G. Shen, Magnetocaloric Effect in Itinerant Electron Metamagnetic Systems La(Fe1−xCox)11.9Si1.1, J. Appl. Phys, 2005, 97, p 10M303. https://doi.org/10.1063/1.1847071

    Article  CAS  Google Scholar 

  29. L. Jia, J.R. Sun, J. Shen, Q.Y. Dong, J.D. Zou, B. Gao, T.Y. Zhao, H.W. Zhang, F.X. Hu, and B.G. Shen, Magnetocaloric Effects in the La(Fe, Si)13 Intermetallics Doped by Different Elements, J. Appl. Phys, 2009, 105, p 07A924. https://doi.org/10.1063/1.3072021

    Article  CAS  Google Scholar 

  30. J. Shen, Q.Y. Dong, Y.X. Li, and J.R. Sun, Effect of Pr and Co Substitution on Magnetic Properties and Magnetic Entropy Changes in LaFe13−xSix Compounds, J. Alloys Compd., 2008, 458, p 115–118. https://doi.org/10.1016/j.jallcom.2007.09.064

    Article  CAS  Google Scholar 

  31. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 2012, 9(7), p 671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. P. Wang, H. Li, and L. Yang, Free Volume Contributing to the Different Yield Behaviors Between Tension and Compression Deformations in Metallic Glasses, Metals-Open Access Metall. J., 2017 https://doi.org/10.3390/met7100444

    Article  Google Scholar 

  33. R.Z. Chen, B. Fu, H. Zhang, J. Hu, X. Yang, and L. Zhang, Microstructure Evolution and Accelerated Magnetocaloric Phase Formation of LaFe13.1Co0.7Si1.4 Alloy by Forging Deformation at Room Temperature. J. Alloys Compd., 2022, 925

  34. X.T. Dong, X.C. Zhong, D.R. Peng, J.H. Huang, H. Zhang, D.L. Jiao, Z.W. Liu, and R.V. Ramanujan, La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn42Bi58 Magne-Tocaloric Composites Prepared by Low Temperature Hot Pressing. J. Alloys Compd., 2017, 737, p 568–574. https://doi.org/10.1016/j.jallcom.2017.12.108

  35. T. Wang, J.J. Si, Y.D. Wu, K. Lv, Y.H. Liu, and X.D. Hui, Two-Step Work-Hardening and Its Gigantic Toughening Effect in Zr-Based Bulk Metallic Glasses, Scripta Mater., 2018, 150, p 106–109. https://doi.org/10.1016/j.scriptamat.2018.03.006

    Article  CAS  Google Scholar 

  36. S. Jiang, R.L. Peng, Z. Hegedues, T. Gnäupel-Herold, J.J. Moverare, U. Lienert, F. Fang, X. Zhao, L. Zuo, and N. Jia, Micromechanical Behavior of Multilayered Ti/Nb Composites Processed by Accumulative Roll Bonding: An In-Situ Synchrotron X-ray Diffraction Investigation, Acta Mater. (2020) 116546. https://doi.org/10.1016/j.actamat.2020.116546

  37. S. Gourdet and F. Montheillet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 57(9), p 2685–2699. https://doi.org/10.1016/s1359-6454(03)00078-8

    Article  ADS  Google Scholar 

  38. Y.Y. Shao, Y.F. Liu, K. Wang, M.X. Zhang, and J. Liu, Impact of Interface Structure on Functionality in Hot-Pressed La-Fe-Si/Fe Magnetocaloric Composites. Acta Materialia, 2020, 195. https://doi.org/10.1016/j.actamat.2020.04.042

  39. Y. Zhao, M.L. Yang, X.W. Wu, and X. Chen, Phase and Organization of LaFe11.6Si1.4 Alloys at Different Heat Treatment Temperatures. J. Neijiang Normal Univ., 2015, 000 (002) p 14–18. https://doi.org/10.13603/j.cnki.51-1621/z.2015.02.004

  40. T.L. Phan, T.V. Manh, H.R. Park, B.W. Lee, S.C. Yu, H. Yang, C. Li, H.G. Piao, Y.D. Zhang, D.H. Manh, and N.T. Dang, Magnetocaloric Effect in Ba-doped LaCoO3 Cobaltites Showing Second-Order Phase Transitions, J. Magn. Magn. Mater., 2021 https://doi.org/10.1016/j.jmmm.2021.168378

    Article  Google Scholar 

  41. X.L. Hou, Y. Tian, Y. Xue, C.Y. Liu, W.X. Xia, H. Xu, P. Lampen-Kelley, H. Srikanth, and M.H. Phan, Formation of Tree-Like and Vortex Magnetic Domains of Nanocrystalline α-(Fe, Si) in La-Fe-Si Ribbons During Rapid Solidification and Subsequent Annealing, J. Alloy. Compd., 2016, 669, p 205–209. https://doi.org/10.1016/j.jallcom.2016.01.211

    Article  CAS  Google Scholar 

  42. B.K. Banerjee, On a Generalised Approach to First and Second Order Magnetic Transitions, Phys. Lett., 1964, 12(1), p 16–17. https://doi.org/10.1016/0031-9163(64)91158-8

    Article  ADS  Google Scholar 

  43. D. Choudhury, T. Suzuki, D. Okuyama, D. Morikawa, K. Kato, M. Takata, K. Kobayashi, R. Kumai, H. Nakao, and Y. Murakami, Evolution of Magnetic and Structural Transitions and Enhancement of Magnetocaloric Effect in Fe1−xMnxV2O4, Phys. Rev. B, 2014, 89(10), p 331–333. https://doi.org/10.1103/PhysRevB.89.104

    Article  Google Scholar 

  44. Dan’kov, A.M. Tishin, V.K. Pecharsky, and K.A. Gschneidner Jr, Magnetic Phase Transitions and the Magnetothermal Properties of Gadolinium. Phys. Rev. B, 1998, 57, p 3478. https://doi.org/10.1103/PhysRevB.57.3478

  45. J. Liu, M. Krautz, K. Skokov, T.G. Woodcock, and O. Gutfleisch, Systematic Study of the Microstructure, Entropy Change and Adiabatic Temperature Change in Optimized La-Fe-Si Alloys, Acta Mater., 2011, 59, p 3602–3611. https://doi.org/10.1016/j.actamat.2011.02.033

    Article  CAS  ADS  Google Scholar 

  46. L.M. Moreno-Ramírez, C. Romero-Muñiz, J.Y. Law, V. Franco, A. Conde, I.A. Radulov, F. Maccari, K.P. Skokov, and O. Gutfleisch, The Role of Ni in Modifying the Order of the Phase Transition of La(Fe, Ni, Si)13, Acta Mater. 160 (2018) p 137–146. https://doi.org/10.1016/j.actamat.2018.08.054

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hebei Province (Grant No. E2019210159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Fu or Jie Han.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Fu, B., Han, J. et al. Microstructural Evolution and Magnetocaloric Properties of Cold Plastically Deformed LaFe10.9Co0.7Si1.4 Compound. J. of Materi Eng and Perform 33, 2429–2439 (2024). https://doi.org/10.1007/s11665-023-08128-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08128-5

Keywords

Navigation