Skip to main content
Log in

Microstructure and Origin of Hot-Work Tool Steel Fracture Toughness Deviation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dies and tools used in hot metal forming are exposed to elevated temperatures and high contact pressures, and therefore to wear and fatigue. Fracture toughness is thus one of the main material properties used when selecting and optimizing heat treatment of tools. However, fracture toughness data alone is not sufficient and need to be supported by other material properties and features. The aim of the present research work was to correlate fracture toughness properties of hot-work tool steel, especially its variation to the local microstructure, microhardness, and composition and to establish methodology for proper evaluation of tool steel’s fracture toughness. Research was performed on H11-type hot-work tool steel specimens, heat treated under the same conditions but displaying greatly different fracture toughness. Results show that the presence of any weak point, either in a form of non-metallic inclusions and/or large undissolved eutectic carbide clusters, located in the region of positive segregation with high microhardness will lead to considerable reduction in fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.A. Schey: Tribology in Metalworking: Friction, Lubrication and Wear, ASM, Ohio, 1984.

    Google Scholar 

  2. R. Seidel and H. Luig: in Proc. Int. Eur. Conf. Tool. Mater. H. Berns, M. Hofmann, L.A. Norström, K. Rasche, and A.M. Schindler, eds., Interlaken, Switzerland, 1992, pp. 467–80.

  3. O. Barrau, C. Boher, C. Vergne, and F. Rezai-Aria: in Proc. 6th Int. Tool. Conf. J. Bergstrom, G. Fredriksson, M. Johansson, O. Kotik, and F. Thuvander, eds., Karlstad, Sweden, 2002, pp. 81–94.

  4. O. Barrau, C. Boher, R. Gras and F.A. Reazai: Wear, 2003, Vol. 255, pp. 1444-1454.

    Article  CAS  Google Scholar 

  5. P.H. Hansen: Ph. D. Thesis, Technical University of Denmark, Lyngby, 1990.

  6. R. Ebara and K. Kubota: Eng. Fail. Anal., 2008, Vol. 15, pp. 881-893.

    Article  Google Scholar 

  7. L. Lavtar, T. Muhic, G. Kugler and M. Tercelj: Eng. Fail. Anal., 2011, Vol. 18, pp. 1143-1152.

    Article  CAS  Google Scholar 

  8. M. Bayramoglu, H. Polat and N. Geren: J. Mater. Process. Technol., 2008, Vol. 205, pp. 394-403.

    Article  CAS  Google Scholar 

  9. H. Saiki, Y. Marumo, A. Minami and T. Sonoi: J. Mater. Process. Technol., 2001, Vol. 113, pp. 22-27.

    Article  CAS  Google Scholar 

  10. M. Bahrami, S.H. Mousavi, M.A. Golozar, M. Shamanian and N. Varahram: Wear, 2004, Vol. 258, pp. 846-851.

    Article  Google Scholar 

  11. V. Leskovsek, B. Sustarsic and G. Jutrisa: J. Mater. Process. Technol., 2006, Vol. 178, pp. 328-334.

    Article  CAS  Google Scholar 

  12. V. Leskovsek, B. Ule and B. Liscic: J. Mater. Process. Technol., 2002, Vol. 127, pp. 298-308.

    Article  CAS  Google Scholar 

  13. H. Jesperson: in Proc. 5th Int. Conf. Tool., F. Jeglitsch, R. Ebner, and H. Leitner, eds., Leoben, Austria, 1999, pp. 93–102.

  14. R. Ebner, H. Leitner, F. Jeglitsch, and D. Caliskanoglu: in Proc. 5th Int. Conf. Tool., F. Jeglitsch, R. Ebner, and H. Leitner, eds., Leoben, Austria, 1999, pp. 3–12.

  15. M. Janssen, J. Zuidema and R.J.H. Wanhill: Fracture Mechanics, 2nd ed., Delft University Press, Delft, 2002.

    Google Scholar 

  16. B.A. Behrens, E. Doege, S. Reinsch, K. Telkamp. H. Daehndel and A. Specker: J. Mater. Process. Technol., 2007, Vol. 185, pp. 139-146.

    Article  CAS  Google Scholar 

  17. ASTM E399-12e1 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic Materials, ASTM, 2012.

    Google Scholar 

  18. ASTM E1820-11e2 Standard Test Method for Measurement of Fracture Toughness. ASTM, West Conshohocken, 2011.

    Google Scholar 

  19. V. Leskovsek and B. Podgornik: Mater. Sci. Eng. A, 2012, Vol. 531, pp. 119-129.

    Article  CAS  Google Scholar 

  20. W. Chang: Eng. Fract. Mech., 1988, Vol. 31, pp. 807-816.

    Article  Google Scholar 

  21. W. Chang: Eng. Fract. Mech., 1990, Vol. 36, pp. 313-320.

    Article  Google Scholar 

  22. B. Ule, V. Leskovsek and B. Tuma: Eng. Fract. Mech., 2000, Vol. 65, pp. 559-572.

    Article  Google Scholar 

  23. V. Leskovsek, B. Ule and A. Rodic: Met. Alloys Technol., 1993, Vol. 27, pp. 195-204.

    Google Scholar 

  24. S. Wei, Z. Tingshi, G. Daxing, L. Dunkang, L. Poliang and Q. Xiaoyun: Eng. Fract. Mech., 1982, Vol. 16, pp. 69-82.

    Article  Google Scholar 

  25. M.A.N. Shabara, A.A. El-Domiaty and M.D. Al-Ansary: Eng. Fract. Mech., 1988, Vol. 54, pp. 533-541.

    Article  Google Scholar 

  26. R.O. Ritchie and R.M. Horn: Metall. Trans. A, 9A, 1978, pp. 331-341.

    CAS  Google Scholar 

  27. K.H. Schwalbe: Eng. Fract. Mech., 1977, Vol. 9, pp. 795-832.

    Article  CAS  Google Scholar 

  28. U. Krupp: Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts, Wiley-VCH GmbH & Co, Weinheim, 2007.

    Book  Google Scholar 

  29. E.E. Gdoutos: Fracture Mechanics Criteria and Applications, Kluwer Academic Publishers, London, 1990.

    Book  Google Scholar 

  30. J.F. Knott: Fundamentals of fracture mechanics, Butterworth, London, 1973.

    Google Scholar 

  31. B. Ule: Mater. Techn., 2005, Vol. 39, pp. 189-209.

    Google Scholar 

Download references

Acknowledgments

This investigation was part of a bigger project financially supported by Slovenian steel company Metal Ravne d.o.o. Involvement of Mr. A. Vrečič and Mrs. T. Vrečko-Pirtovšek, M.Sc. from Metal Ravne is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Podgornik.

Additional information

Manuscript submitted April 21, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podgornik, B., Leskovšek, V. Microstructure and Origin of Hot-Work Tool Steel Fracture Toughness Deviation. Metall Mater Trans A 44, 5694–5702 (2013). https://doi.org/10.1007/s11661-013-1921-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1921-6

Keywords

Navigation