Skip to main content

Advertisement

Log in

Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Pérez and F.J. Belzunce: Materials Science and Engineering: A, 2015, vol. 624, pp. 32–40.

    Article  Google Scholar 

  2. B. Podgornik, V. Leskovšek, F. Tehovnik and J. Burja: Surface & Coatings Technology, 2015, vol. 261, pp. 253–261.

    Article  Google Scholar 

  3. D. Mellouli, N. Haddar, A. Köster and H.F. Ayedi: Engineering Failure Analysis, 2014, vol. 45, pp. 85–95.

    Article  Google Scholar 

  4. S. Malm and L.A. Norström: Metal Sci, 1979, vol. 9, pp. 544–550.

    Google Scholar 

  5. V. Leskovšek, B. Šuštaršič and G. Jutriša: Journal of Materials Processing Technology, 2006, vol. 178, pp. 328–334.

    Article  Google Scholar 

  6. G. Roberts, G. Krauss and R. Kennedy (Eds.): Tool Steels, 5th ed., ASM International, Materials Park, OH, 1998.

    Google Scholar 

  7. Euroforge.org: 2014 Energy cost/ratios in the European forging industry, 2015. http://www.euroforge.org/fileadmin/user_upload/Downloads/Energy_Euroforge.pdf Accessed 26 May 2017.

  8. M. Shirgaokar: Technology to Improve Competitiveness in Warm and Hot Forging -Increasing Die Life and Material Utilization, Ph.D. Dissertation, Ohio State University, Columbus, OH, 2008.

  9. T.K. Ellera, L. Greve, M. Andres, M. Medricky, V.T. Meinders and A.H. van den Boogaard: Journal of Materials Processing Technology, 2016, vol. 228, pp. 43–58.

    Article  Google Scholar 

  10. B.A. Behrens, E. Doege, S. Reinsch, K. Telkamp, H. Daehndel and A. Specker: Journal of Material Processing Technology, 2007, vol. 185, pp. 139-146.

    Article  Google Scholar 

  11. B. Podgornik and V. Leskovšek: Steel Research International, 2013, vol. 84, pp. 1294–1301.

    Article  Google Scholar 

  12. A. Eser, C. Broeckmann and C. Simsir: Computational Materials Science, 2016, vol. 113, pp. 280–291.

    Article  Google Scholar 

  13. Jing-Yuan Li, Yu-Lai Chen and Jian-Hua Huo: Materials Science and Engineering: A, 2015, vol. 640, pp. 16–23.

    Article  Google Scholar 

  14. M. Ramezani, T. Pasang, Z. Chen, T. Neitzert and D. Au: Journal of Materials Research and Technology, 2015, vol. 4, pp. 114–125.

    Article  Google Scholar 

  15. C. Lerchbacher, S. Zinner and H. Leitner: Materials Science and Engineering: A, 2013, vol. 564, pp. 163–168.

    Article  Google Scholar 

  16. G. Telasang, J. Dutta Majumdar, G. Padmanabham and I. Manna: Materials Science and Engineering: A, 2014, vol. 599, pp. 255–267.

    Article  Google Scholar 

  17. J.L. Dossett and G.E. Totten: ASM Handbook Volume 4A: Steel Heat Treating Fundamental and Processes, ASM International, Materials Park, OH, 1991.

  18. B. Podgornik, B. Žužek and V. Leskovšek: Materials Performance and Characterization, 2014, vol. 3, pp. 1-9.

    Google Scholar 

  19. V. Leskovsek, B. Ule and A. Rodic: Metallurgical Alloys Technology, 1993, vol. 27, pp. 195–204.

    Google Scholar 

  20. B. Ule, V. Leskovsek and B. Tuma: Engineering Fracture Mechanics, 2000, vol. 65, pp. 559–572.

    Article  Google Scholar 

  21. S. Wei, Z. Tingshi, G. Daxing, L. Dunkang, L. Poliang and Q. Xiaoyun: Engineering Fracture Mechanics, 1982, vol. 16, pp. 69–82.

    Article  Google Scholar 

  22. E.E. Gdoutos: Fracture Mechanics Criteria and Applications, Kluwer Academic Publishers, London, 1990.

    Book  Google Scholar 

  23. I. Souki, D. Delagnes, P. Lours: Procedia Engineering, 2011, vol. 10, pp. 631-637.

    Article  Google Scholar 

  24. R.A. Mesquita, C.A. Barbosa, E.V. Morales and H.-J. Kestenbach: Metallurgical and Materials Transactions A, 2011, vol. 42A, pp. 461–472.

    Article  Google Scholar 

  25. N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, C. Levaillant: Materials Science and Engineering A, 2004, vol. 387-389, pp. 171-175.

    Article  Google Scholar 

  26. M. Sedlaček, B. Podgornik and J. Vižintin: Tribology International, 2012, vol. 48, pp. 102–112.

    Article  Google Scholar 

  27. N. Sandberg: On the Machinability of High Performance Tool Steels, Ph.D. Thesis, Uppsala University, 2012

Download references

Acknowledgment

This work is part of the research programs P2-0050 and P2-0231, which are financed by the Slovenian Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Podgornik.

Additional information

Manuscript submitted June 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podgornik, B., Puš, G., Žužek, B. et al. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel. Metall Mater Trans A 49, 455–462 (2018). https://doi.org/10.1007/s11661-017-4430-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4430-1

Navigation