Skip to main content
Log in

Study of Rust Effect on the Corrosion Behavior of Reinforcement Steel Using Impedance Spectroscopy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Most studies on corrosion of steel reinforcement in concrete are conducted on steel samples with polished surface (free of all oxides) in order to reproduce the same experimental conditions. However, before embedding in concrete, the steel bars are often covered with natural oxides (rust), which are formed during exposure to the atmosphere. The presence of this rust may affect the electrochemical behavior of steel rebar in concrete. In order to understand the effect of rust on the corrosion behavior of reinforcement steel, potentiodynamic and electrochemical impedance spectroscopy (EIS) tests were carried out in a simulated concrete pore solution using steel samples with two different surface conditions: polished and rusted samples. The obtained results have shown that the presence of rust on the steel bar has a negative effect on its corrosion behavior, with or without the presence of chlorides. This detrimental effect can be explained by the fact that the rust provokes a decrease of the electrolyte resistance at the metal-concrete interface and reduces the repassivating ability. In addition, the rust layer acts as a barrier against the hydroxyl ion diffusion, which prevents the realkalinization phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Feliu, G.A. Gonzalez, and S. Feliu: J. Appl. Electrochem., 2005, vol. 35, pp. 429–36.

    Article  CAS  Google Scholar 

  2. O. Poupard, A. Aït-Mokhtar, and P. Dumargue: Cem. Concr. Res., 2004, vol. 34, pp. 91–1000.

    Article  Google Scholar 

  3. G. Batis and E. Rakanta: Cem. Concr. Compos., 2005, vol. 27, pp. 269–75 .

    Article  CAS  Google Scholar 

  4. F.G. da Silva and J.B. Liborio: Mater. Res., 2006, vol. 9, pp. 209–15.

    Article  Google Scholar 

  5. B. Huet, V. L’hostis, F. Miserque, and H. Idrissi: Electrochim. Acta, 2005, vol. 51, pp. 172–80.

    Article  CAS  Google Scholar 

  6. U. Angst, B. Elsener, C.K. Larsen, and O. Vennesland: J. Appl. Electrochem., 2010, vol. 40, pp. 561–73.

    Article  CAS  Google Scholar 

  7. L. Dhouibi, Ph. Refait, E. Triki, and J. Génin: J. Mater. Sci., 2006, vol. 41, pp. 4928–36.

    Article  CAS  Google Scholar 

  8. M. Saremi and E. Mahallati: Cem. Concr. Res., 2002, vol. 32, pp. 1915–21.

    Article  CAS  Google Scholar 

  9. J. Bonastre, P. Garcés, F. Huerta, C. Quijada, L.G. Andión, and F. Cases: Corros. Sci., 2006, vol. 48, pp. 1122–36.

    Article  CAS  Google Scholar 

  10. T. Henriques, A. Reguengos, L. Proença, E. Pereira, M. Rocha, M. Neto, and I. Fonseca: J. Appl. Electrochem., 2010, vol. 40, pp. 99–107.

    Article  CAS  Google Scholar 

  11. N. Birbilis, K.M. Nairn, and M. Forsyth: Electrochim. Acta, 2004, vol. 49, pp. 4331–39.

    Article  CAS  Google Scholar 

  12. W. Chen, D. Rong-Gui, Y. Chen-Qing, Z. Yan-Feng, and L. Chang-Jian: Electrochim. Acta, 2010, vol. 55, pp. 5677–82.

    Article  CAS  Google Scholar 

  13. H. Tamura: Corros. Sci., 2008, vol. 50, pp. 1872–83.

    Article  CAS  Google Scholar 

  14. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa: Corros. Sci., 1994, vol. 36, pp. 283–99.

    Article  CAS  Google Scholar 

  15. E. Zitrou, J. Nikolaou, P.E. Tsakiridis, and G.D. Papadimitriou: Constr. Build. Mater., 2007, vol. 21, pp. 1161–69.

    Article  Google Scholar 

  16. A.J. Al-Tayyib, M. Shamin Khan, I.M. Allam, and A.I. Al-Mana: Cem. Concr. Res., 1990, vol. 20, pp. 955–60.

    Article  CAS  Google Scholar 

  17. E. Proverbio and R. Cigna: Mater. Sci. Forum, 1995, pp. 877–82.

  18. C.M. Hanson and B. Sorensen: “Corrosion Rates of Steel in Concrete,” ASTM STP 1065, ASTM, Philadelphia, PA, 1990.

  19. J.A. González, J.M. Miranda, E. Otero, and S. Feliu: Corros. Sci., 2007, vol. 49, pp. 436–48.

    Article  Google Scholar 

  20. L.T. Mammoliti, L.C. Brown, C.M. Hansson, and B.B. Hope: Cem. Concr. Res., 1996, vol. 26, pp. 545–50.

    Article  CAS  Google Scholar 

  21. P. Novak, R. Mala, and L. Joska: Cem. Concr. Res., 2001, vol. 31, pp. 589–93.

    Article  CAS  Google Scholar 

  22. M. Maslehuddin, M.M. Al-Zahrani, S.U. Al-Dulaijan, Abdulquddus, S. Rehman, and S.N. Ahsan: Cem. Concr. Compos., 2002, vol. 24, pp. 151–58.

    Article  CAS  Google Scholar 

  23. J.A. González, A. Bautista, and S. Feliu: Cem. Concr. Res., 1996, vol. 6, pp. 501–11.

    Article  Google Scholar 

  24. F. Zhang, J. Pan, and C. Lin: Corros. Sci., 2009, vol. 51, pp. 2130–38.

    Article  CAS  Google Scholar 

  25. M. Keddam, H. Takenouti, X.R. Nóvoa, C. Andrade, and C. Alonso: Cem. Concr. Res., 1997, vol. 27, pp. 1191–1201.

    Article  CAS  Google Scholar 

  26. D. Landolt: Corrosion et Chimie de Surfaces des Métaux, Presse Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Bensabra.

Additional information

Manuscript submitted December 9, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensabra, H., Azzouz, N. Study of Rust Effect on the Corrosion Behavior of Reinforcement Steel Using Impedance Spectroscopy. Metall Mater Trans A 44, 5703–5710 (2013). https://doi.org/10.1007/s11661-013-1915-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1915-4

Keywords

Navigation