Skip to main content
Log in

Modeling Grain Boundary Motion and Dynamic Recrystallization in Pure Metals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The current study proposes a new approach of modeling discontinuous dynamic recrystallization in pure copper and cobalt based on the inverse analysis of experimental data. This approach comprises two steps: First, the mobility of grain boundaries is determined by a mean-field model in the steady state regime, then in a second step the information collected (mobility, nucleation frequency) is used to determine the mechanical behavior and the grain size change. The nucleation criterion is reformulated in a more general expression, and a new expression of the nucleation frequency with a single empirical parameter is proposed. The model predicts the stress–strain curves and the evolution of mean grain size, and is in good agreement with experimental data for both copper and cobalt. The modeling procedure requires a minimum of initial material parameters and could be especially attractive in the case of complex metals and alloys for which these parameters are unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. T Sakai and JJ Jonas. Acta Metall, 32:189–209, 1984.

    Article  CAS  Google Scholar 

  2. R Sandstrom and R Lagneborg. Acta Metall, 23:387–398, 1975.

    Article  CAS  Google Scholar 

  3. FJ Humphreys and M Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1995.

    Google Scholar 

  4. DG Cram, HS Zurob, Y Brechet, and CR Hutchinson. Acta Mater, 57:5218–5228, 2009.

    Article  CAS  Google Scholar 

  5. F Montheillet, O Lurdos, and G Damamme. Acta Mater, 57:1602–1612, 2009.

    Article  CAS  Google Scholar 

  6. B Derby. Acta Metall Mater, 39:955–962, 1991.

    Article  CAS  Google Scholar 

  7. H Hallberg, M Wallin, and M Ristinmaa. Comp Mater Sci, 49:25–34, 2010.

    Article  CAS  Google Scholar 

  8. UF Kocks and H Mecking. Progr Mater Sci, 48:171–273, 2003.

    Article  CAS  Google Scholar 

  9. HS Zurob, Y Brechet, and J Dunlop. Acta Mater, 54:3983–3990, 2006.

    Article  CAS  Google Scholar 

  10. Y.V.R.K. Prasad and K.P. Rao: Mater. Sci. Eng. A, 2005, vol. 391, pp. 141–50.

  11. R Kapoor, B Paul, S Raveendra, I Samajdar, and JK Chakravartty. Metall Mater Trans A, 40A:818– 827, 2009.

    Article  CAS  Google Scholar 

  12. YVRK Prasad and KP Rao. Materials Letters, 58:2061–2066, 2004.

    Article  CAS  Google Scholar 

  13. YVRK Prasad and KP Rao. Mater Sci Eng A, 374:335–341, 2004.

    Article  Google Scholar 

  14. YVRK Prasad and KP Rao. Phil Mag, 84:3039–3050, 2004.

    Article  CAS  Google Scholar 

  15. YVRK Prasad and KP Rao. Zeitschrift fur Metallkunde, 96:71–77, 2005.

    CAS  Google Scholar 

  16. YVRK Prasad and KP Rao. Trans ASME, 128:158–162, 2006.

    CAS  Google Scholar 

  17. B Paul, R Kapoor, JK Chakravartty, Bidaye AC, IG Sharma, and AK Suri. Scripta Mater, 60:104– 107, 2009.

    Article  CAS  Google Scholar 

  18. U.F. Kocks: Constitutive Behavior Based on Crystal Plasticity, Kluwer Academic Publishers, The Hague, 1987.

  19. PM Sargent, G Malakondaiah, and MF Ashby. Scripta Metall, 17:625–629, 1983.

    Article  CAS  Google Scholar 

  20. LF Bryant, R Speiser, and JP Hirth. Trans Metall Soc AIME, 242:1145–1148, 1968.

    CAS  Google Scholar 

  21. GI Taylor. Proc Roy Soc London A, 45:362–387, 1934.

    Google Scholar 

  22. O Bouaziz and P Buessler. Adv Eng Mater, 6:79–83, 2004.

    Article  Google Scholar 

  23. D Turnbull. Trans AIME, 191:661–665, 1951.

    Google Scholar 

  24. CR Hutchinson, HS Zurob, SW Sinclair, and Y Brechet. Scripta Mater, 59:635–637, 2008.

    Article  CAS  Google Scholar 

  25. F Lefevre-Schlick, Y Brechet, HS Zurob, G Purdy, and D Embury. Mater Sci Eng A, 502:70–78, 2009.

    Article  Google Scholar 

  26. E.A. Holm, M.A. Miodownik, and A.D. Rollett: Acta Mater., 2003, vol. 51, pp. 2701–16.

  27. JE Bailey and PB Hirsch. Proc Roy Soc London A, 267:11–30, 1962.

    Article  CAS  Google Scholar 

  28. T Sakai. J Mater Process Tech, 53:349–361, 1995.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Ministry of Education, Science and Culture of Japan and the Region Rhone-Alpes in France for the financial support. The work was performed within the frame of the Japanese-French joint laboratory ELyT lab. The authors gratefully acknowledge C.R. Hutchinson and F. Montheillet for discussions during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Favre.

Additional information

Manuscript submitted January 15, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favre, J., Fabrègue, D., Piot, D. et al. Modeling Grain Boundary Motion and Dynamic Recrystallization in Pure Metals. Metall Mater Trans A 44, 5861–5875 (2013). https://doi.org/10.1007/s11661-013-1914-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1914-5

Keywords

Navigation