Skip to main content
Log in

Investigation of Structural and Diffuse Phase Transition of New Nano Lead-Free System xBAO – yBZT − (1 − x − y) BCT

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We present in this article the latest development of single-phase nanocrystalline ceramics, x(BiAlO3) − y(BaZr0.2Ti0.8O3) − (1 − x − y) (Ba0.7Ca0.3TiO3), abbreviated as xBAO − yBZT − (1 − x − y) BCT with (x, y) = (0, 0.50), (0.01, 0.49), (0.03, 0.47), and (0.1, 0.4), which were prepared using a high-energy ball milling technique. In the current study, BZT − xBCT has been selected as a host system to be incorporated into BiAlO3. Their properties of structure, relative dielectric permittivity (ε), diffuse phase transition (γ), peak broadening (δ γ ), and deviation from Curie–Weiss law (ΔT C) were systematically investigated. However, the decreasing trend of Curie temperature (T c) in the system does not obey the Vegard’s law. Analysis of X-ray diffraction patterns shows the solid solubility of (Bi3+, Ca2+) into A-site and that of (Zr4+, Al3+) into B-site of pure BaTiO3 lattice of tetragonal symmetry with space group P4mm. The values of γ (1.75 to 1.63) confirmed that the ceramic has intermediate behavior between the relaxor and normal ferroelectric, which is evaluated by modified Curie–Weiss law. The high value of quality factor (115), when x = 0.01, y = 0.49 at 1-kHz frequency and temperature 323 K (50  °C), decreases with the increasing frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheol-Woo Ahn, Makarand Karmarkar, Dwight Viehland, Dong-Heon Kang, Kyoo-Sik Bae, and Shashank Priya: Ferroelectrics Lett., 2008, 35, 66-72.

    Article  CAS  Google Scholar 

  2. L. Zhengfa, L. Yongxiang, and Z. JiWei: Curr. Appl. phys., 2011, vol. xxx, pp. 1–12.

  3. Wei Li, Zhijun Xu, Ruiqing Chu, Peng Fu, Guozhong Zang: Matter Lett., 2010, 64, 2325-2327.

    Article  CAS  Google Scholar 

  4. I-Hao Chan, Chieh-Tze Sun, Mau-Phon Houng, Sheng-Yuan Chu: Ceram Int., 2011, 37, 2061-2068.

    Article  CAS  Google Scholar 

  5. Ilya Grinberg, Pavol Juhas, Peter K. Davies and Andrew M. Rappe: Phys. Rev. Lett., 2007, 99, 267603.

    Article  Google Scholar 

  6. Lei Cui, YU-Dong Hou, Sai Wang, Chao Wang and Man-Kang Zhu: J.Appl.Phys., 2010, 107, 054105.

    Article  Google Scholar 

  7. L. E. Cross: Ferroelectrics., 1987, 76, 241.

    Article  CAS  Google Scholar 

  8. G.A. Smolenskii and V.A. Isupov: Dokl. AKad. Nauk. SSSR., 954, 9, 653, 1954.

  9. Y.-D. Hou, L. Cui, M.-J. Si, H.-Y. Ge, M.-K., H. Yan: J. Electroceram., 2012, vol. 28, pp. 105-108.

    Article  CAS  Google Scholar 

  10. Vladimir V. Shvartsman, Doru C. Lupascu: J. Am. Ceram. Soc., 2012, 95[1], 1-26.

    Article  CAS  Google Scholar 

  11. C. Fu, F. Pan, W. Cai, X.Deng, and X. Liu: Mater Sci., 2009, vol. 27, p. 3.

    CAS  Google Scholar 

  12. Joel Zylberberg, Alexei A. Belik, Eiji Takayama-Muromachi and Zuo-Guang Ye: chem. Mater., 2007, 19, 6385-6390.

    Article  CAS  Google Scholar 

  13. Aman Ullah, Sun Young Lee, Hai Joon Lee, III Kim, Chang Won Ahn, Hak-In Hwan, Ali Hussain and Jae Shin Lee: J. Korean Phys Soc., 2010, 57 [4], 1102-1105.

    CAS  Google Scholar 

  14. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, p. 1.

    Article  CAS  Google Scholar 

  15. W.F. Liu and X.B. Ren: Phy. Rev. Lett., 2009, vol. 103, p. 257602.

    Article  Google Scholar 

  16. S.-J. Kang: Sintering: Densification, Grain Growth and Microstructure, 1st ed., Elsevier, Oxford, 2005.

    Google Scholar 

  17. Jinghui Gao, Dezhen Xue, Yu Wang, Dong Wang, Lixue Zhang, Haijun Wu, Shengwu Guo, Huixin Bao, Chao Zhou, Wenfeng Liu, Sen Hou, Ge Xiao, and Xiaobing Ren: Appl. Phys. Lett., 2011, 99, 092901.

    Article  Google Scholar 

  18. V. Koval, J. Briancin: Ceram. Silikaty., 2003, vol. 47, pp. 8-12.

    CAS  Google Scholar 

  19. Gao Feng, Liu Liangliang, Xu Bei, Cao Xiao, Deng Zhenqi: J. Alloy Compd., 2011, 509, 6049-6055.

    Article  Google Scholar 

  20. V. Paunovic, Vojislav Mitic, Vladimir Pavlovic, Miroslav Miroslav, Ljiljana Zivkovic: Proc. appl. ceram., 2010, 4[4], 253-258.

    CAS  Google Scholar 

  21. F. Moura, A.Z.Simoes, E.C Aguiar, I.C Nogueira, M.A. Zaghete, J.A. Varela, E. Longo: J. Alloy Compd., 2009, 479, 280-283.

    Article  CAS  Google Scholar 

  22. C. Suryanarayana, and M. G. Norton: X-ray Diffraction A Practical approach. Plenum Press, New York, 1998.

    Book  Google Scholar 

  23. Hising-I Hsiang, Fu-Su Yen: J. Am. Ceram. Soc., 1996, 79[4], 1053-1060.

    Article  CAS  Google Scholar 

  24. G. Ouyang, W. G. Zhu, C. Q. Sun, Z. M. Zhu and S. Z. Liao: Phys. Chem. Chem. Phys., 2010, 12, 1543-1549.

    Article  CAS  Google Scholar 

  25. J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, D. Damjanovic: J. Am. Ceram. Soc., 2009, 92 [6], 1153-1177.

    Article  Google Scholar 

  26. Gao Feng, Hong Rongzi, Liu Jiaji, Li Zhen, Chen Lihong, Tian Changsheng: J. Eur. Ceram Soc., 2009, 29, 1687-1693.

    Article  CAS  Google Scholar 

  27. W.-C. Lee, C.-Y. Huang, L.-K. Tsao, and Y.-C. Wu: J. Eur. Ceram. Soc., 2009, 29[8], pp. 1443–48.

    Article  CAS  Google Scholar 

  28. S.K.S. Parashar, R.N.P Choudhary, and B.S. Murthy: J. Nanosci. Nanotechnol., 2009, vol. 9, pp. 3106–11.

  29. Yongping Pu, Haidong Wu, Jifeng Wei: Sensor Actuat A-Phys., 2012, 173, 158-162.

    Article  Google Scholar 

  30. E.N. Bunting, G.R. Shelton, and A.S. Creamer: J. Res. Natl. Bur. Stand., 1949, vol. 43, p. Rp2025.

  31. E.N. Bunting, G.R. Shelton, A.S. Creamer, and B. Jaffe: J. Res. Natl. Bur. Stand., 1951, vol. 47(1), p. Rp2222.

  32. Hongliang Du, Fusheng Tang, Daijun Liu, Dongmei Zhu, Wancheng Zhou, Shaobo Qu: Mater. Sci. Eng. B., 2007, 136, 165-169.

    Article  Google Scholar 

  33. Y. Pu, W. Chen, S. Chen, Hans T. Langhammer: Ceramica., 2005, 51, 214-218.

    CAS  Google Scholar 

  34. Jean-Richard Gomah-Pettry, Senda Said, Pascal Marchet, Jean-Pierre Mercurio: J. Eur. Ceram. Soc., 2004, 24, 1165-1169.

    Article  CAS  Google Scholar 

  35. T. Badapanda, S K Rout, S Panigrahi, T P Sinha: Bull. Mater. Sci., 2008, 31, 897-901.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Department of Science and Technology (DST) of India under Project No. DST/TSG/ME/2011/89-G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagamalleswara Rao Alluri.

Additional information

Manuscript submitted December 13, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alluri, N.R., Parashar, S.K.S., Parashar, K. et al. Investigation of Structural and Diffuse Phase Transition of New Nano Lead-Free System xBAO – yBZT − (1 − x − y) BCT. Metall Mater Trans A 44, 5241–5250 (2013). https://doi.org/10.1007/s11661-013-1875-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1875-8

Keywords

Navigation