Skip to main content
Log in

Design of Hierarchical Cellular Metals Using Accumulative Bundle Extrusion

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This letter introduces a method for designing hierarchical cellular metals employing multipass accumulative bundle extrusion and selective dissolving. The method provides several degrees of freedom for manipulating both the cell-wall properties and architecture of cellular materials. Cellular copper was produced and analyzed as an example of implementing the proposed method. The material hierarchy that can be formed and controlled by means of multipass accumulative extrusion assures strength and enables the material to perform the prescribed functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  2. D. N. Lee and H. S. Kim: Powder Metall., 1992, vol. 35, pp. 275–79.

    CAS  Google Scholar 

  3. H. Utsunomiya, H. Koh, J. Miyamoto, and T. Sakai: Adv. Eng. Mater., 2008, vol. 10, pp 826–29.

    Article  Google Scholar 

  4. R. Lakes: Nature, 1993, vol. 361, pp. 511–15.

    Article  Google Scholar 

  5. C.M. Taylor, C.W. Smith, W. Miller, and K.E. Evans: Int. J. Solids Struct., 2010, vol. 48, pp. 1330–39.

    Article  Google Scholar 

  6. A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, and H.N.G. Wadley: Prog. Mater. Sci., 2001, vol. 46, 309–27.

    Article  CAS  Google Scholar 

  7. N.M. Pugno and A. Carpinteri: Philos. Mag. Lett., 2008, vol. 88, pp. 397–405.

    Article  CAS  Google Scholar 

  8. M.J. Silva and L.J. Gibson: Int. J. Mech. Sci., 1997, vol. 39, pp. 549–63.

    Article  Google Scholar 

  9. F.P. Levi: J. Appl. Phys., 1960, vol. 320, pp. 1469–71.

    Article  Google Scholar 

  10. L. Thilly, F. Lecouturier, G. Coffe, J. P. Peyrade, and S. Askénazy: Physica B, 2001, vol. 294–295, pp. 648–52.

    Article  Google Scholar 

  11. V. Vidal, L. Thilly, F. Lecouturier, and P. O. Renault: Scripta Mater., 2007, vol. 57, pp. 245–48.

    Article  CAS  Google Scholar 

  12. M. Thirumurugan, S. A. Rao, S. Kumaran, and T. S. Rao: J. Mater. Process. Technol., 2011, vol. 211, pp. 1637–42.

    Article  CAS  Google Scholar 

  13. T. Lee, C. H. Park, S. Y. Lee, I. H. Son, D. L. Lee, and C. S. Lee: Met. Mater. Int., 2012, vol. 18, pp. 391–96.

    Article  CAS  Google Scholar 

  14. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: Science, 2008, vol. 320, pp. 1057–60.

    Article  CAS  Google Scholar 

  15. T. Marr, J. Freudenberger, D. Seifert, H. Klauss, J. Romberg, I. Okulov, A. Eschke, C-G. Oertel, W. Skrotzki, U. Kuehn, J. Eckert, and L. Schultz: Metals, 2011, vol. 1, pp. 79–97.

    Article  CAS  Google Scholar 

  16. T.L. Warren: J. Appl. Phys., 1990, vol. 67, pp. 7591–94.

    Article  Google Scholar 

  17. M. Raney: US Patent #1,628,190, 1927.

  18. T. Wada, K. Yubuta, A. Inoue, and H. Kato: Mater. Lett., 2011, 65, pp. 1076–78.

    Article  CAS  Google Scholar 

  19. G. Gottstein and U. F. Kocks: Acta Metall., 1983, vol. 31, pp. 175–88.

    Article  CAS  Google Scholar 

  20. C. M. Taylor, C. W. Smith, W. Miller, and K. E. Evans: Compos. Struct., 2012, vol. 94, pp. 2296–2305.

    Article  Google Scholar 

  21. A. Ajdari, P. Canavan, H. Nayeb-Hashemi, and G. Warner: Mater. Sci. Eng. A, 2009, vol. 499, pp. 434–39.

    Article  Google Scholar 

  22. C.C. Bampton: US Patent #5,620,537, 1997.

  23. K. M. Ryu, J. Y. An, W. S. Cho, Y. C. Yoo, and H. S. Kim: Mater. Trans., 2005, vol. 46, pp. 622–25.

    Article  CAS  Google Scholar 

  24. H. Gilani, S. Jafari, R. Gholami, A. Habibolahzadeh, and M. Mirshahi: Met. Mater. Int., 2012, vol. 18, pp. 327–33.

    Article  CAS  Google Scholar 

  25. B. H. Son, J. G. Hong, Y. T. Hyun, S. C. Bae, and S. E. Kim: J. Korean Inst. Met. Mater., 2012, vol. 50, pp. 100–06.

    CAS  Google Scholar 

Download references

The authors are grateful to Dr. Maxim Yutkin and Dr. Sergey Sapchenko for discussions at the early stages of the current study. The current study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials (10037206) funded by the Ministry of Knowledge Economy, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Manuscript submitted December 20, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latypov, M.I., Lee, D.J., Jeong, HG. et al. Design of Hierarchical Cellular Metals Using Accumulative Bundle Extrusion. Metall Mater Trans A 44, 4031–4036 (2013). https://doi.org/10.1007/s11661-013-1844-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1844-2

Keywords

Navigation