Skip to main content
Log in

Mechanisms of tensile improvement in caliber-rolled high-carbon steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The microstructural evolution and tensile characteristics of caliber-rolled plain carbon steels were quantitatively investigated and compared with those of the as-received plain carbon steels. The caliber-rolled steels exhibited a similar microstructure consisting of an ultrafine-grained ferritic matrix and dispersed fine cementite particles. In contrast to the general trend of caliber-rolling processes showing significant reductions in elongation while retaining a high strength, the present caliber-rolled high-carbon steel exhibited simultaneously improved strength and elongation. This distinctive tensile enhancement of the caliber-rolled high-carbon steel was attributed to the increased strain hardening rate caused by the high fraction of submicron cementite particles and to the transition of the fracture mode from a brittle state to a ductile state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Park, J.-W. Park, J.-T. Yeom, Y. S. Chun, and C. S. Lee, Mater. Sci. Eng. A 527, 4914 (2010).

    Article  Google Scholar 

  2. M. I. A. El Aal, N. El Mahallawy, F. A. Shehata, M. A. El Hameed, E. Y. Yoon, J. H. Lee, and H. S. Kim, Met. Mater. Int. 16, 709 (2010).

    Article  Google Scholar 

  3. A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, CIRP Ann. — Manuf. Technol. 57, 716 (2008).

    Article  Google Scholar 

  4. Y. C. Choi, H. S. Kim, and S. I. Hong, Met. Mater. Int. 15, 733 (2009).

    Article  CAS  Google Scholar 

  5. D. H. Shin, I. Kim, and J. Kim, Met. Mater. Int. 8, 513 (2002).

    CAS  Google Scholar 

  6. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Article  CAS  Google Scholar 

  7. N. Takata, Y. Okitsu, and N. Tsuji, J. Mater. Sci. 43, 7385 (2008).

    Article  CAS  Google Scholar 

  8. J. H. Ji, L.-J. Park, H. W. Kim, S. W. Hwang, C. S. Lee, and K.-T. Park, Korean J. Met. Mater. 49, 474 (2011).

    CAS  Google Scholar 

  9. S. J. Yoo and W. J. Kim, Korean J. Met. Mater. 49, 104 (2011).

    CAS  Google Scholar 

  10. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki, Science 320, 1057 (2008).

    Article  CAS  Google Scholar 

  11. S. Torizuka, A. Ohmori, S. V. S. Narayana Murty, and K. Nagai, Scripta Mater. 54, 563 (2006).

    Article  CAS  Google Scholar 

  12. T. Inoue, F. Yin, and Y. Kimura, Mater. Sci. Eng. A 466, 114 (2007).

    Article  Google Scholar 

  13. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai, Metall. Mater. Trans. A 41, 341 (2010).

    Article  Google Scholar 

  14. T. Lee, M. Koyama, K. Tsuzaki, Y.-H. Lee, and C. S. Lee, Mater. Lett. 75, 169 (2012).

    Article  CAS  Google Scholar 

  15. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, London (1988).

    Google Scholar 

  16. F. Yin, T. Hanamura, T. Inoue, and K. Nagai, Metall. Mater. Trans. A 35, 665 (2004).

    Article  Google Scholar 

  17. T. Seshacharyulu, S. C. Medeiros, J. T. Morgan, J. C. Malas, W. G. Frazier, and Y. V. R. K. Prasad, Mater. Sci. Eng. A 279, 289 (2000).

    Article  Google Scholar 

  18. C. H. Park, Y. G. Ko, J.-W. Park, and C. S. Lee, Mater. Sci. Eng. A 496, 150 (2008).

    Article  Google Scholar 

  19. C. H. Park, B. Lee, S. L. Semiatin, and C. S. Lee, Mater. Sci. Eng. A 527, 5203 (2010).

    Article  Google Scholar 

  20. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Scripta Mater. 47, 893 (2002).

    Article  CAS  Google Scholar 

  21. C. Y. Yu, P. W. Kao, and C. P. Chang, Acta Mater. 53, 4019 (2005).

    Article  CAS  Google Scholar 

  22. R. Song, D. Ponge, D. Raabe, J. G. Speer, and D. K. Matlock, Mater. Sci. Eng. A 441, 1 (2006).

    Article  Google Scholar 

  23. A. Ohmori, S. Torizuka, and K. Nagai, ISIJ Int. 44, 1063 (2004).

    Article  CAS  Google Scholar 

  24. A. W. Thompson, M. I. Baskes, and W. F. Flanagan, Acta Metall. 21, 1017 (1973).

    Article  CAS  Google Scholar 

  25. T. Lee, C. H. Park, D.-L. Lee, and C. S. Lee, Mater. Sci. Eng. A 528, 6558 (2011).

    Article  CAS  Google Scholar 

  26. N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, and D. Terada, ISIJ Int. 48, 1114 (2008).

    Article  CAS  Google Scholar 

  27. R. Song, D. Ponge, and D. Raabe, Acta Mater. 53, 4881 (2005).

    Article  CAS  Google Scholar 

  28. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige, Scripta Mater. 59, 963 (2008).

    Article  CAS  Google Scholar 

  29. G. Dini, A. Najafizadeh, R. Ueji, and S. M. Monir-Vaghefi, Mater. Des. 31, 3395 (2010).

    Article  CAS  Google Scholar 

  30. K. Handa, Y. Kimura, and Y. Mishima, Metall. Mater. Trans. A 40, 2901 (2009).

    Article  Google Scholar 

  31. M.-C. Kim, Y. J. Oh, and J. H. Hong, Scripta Mater. 43, 205 (2000).

    Article  CAS  Google Scholar 

  32. M.-C. Zhao, T.-Y. Zeng, J.-L. Li, H. Xiaofang, Y.-C. Zhao, and A. Atrens, Mater. Sci. Eng. A 528, 4217 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T., Park, C.H., Lee, SY. et al. Mechanisms of tensile improvement in caliber-rolled high-carbon steel. Met. Mater. Int. 18, 391–396 (2012). https://doi.org/10.1007/s12540-012-3002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-3002-6

Key words

Navigation