Skip to main content
Log in

Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today’s society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.L.A. Graça, C.Y. Hoo, O.M.M: Silva and N.J. Lourenço. Eng. Fail. Anal., 2009, vol. 16, pp. 182-86.

    Article  Google Scholar 

  2. Y. Tomita: Mater. Sci. Technol., 1991, vol. 7, pp. 481-89.

    Article  CAS  Google Scholar 

  3. W. Garrison: Metals and Materials Society, 1990, vol. 42, pp. 20-24.

    Article  CAS  Google Scholar 

  4. Y. Tomita: Int. Mater. Rev., 2000, vol. 45, pp. 27-37.

    Article  CAS  Google Scholar 

  5. Y.-S. Choi, J.-G. Kim, Y.-S. Park and J.-Y. Park: Mater. Lett., 2007, vol. 61, pp. 244-47.

    Article  CAS  Google Scholar 

  6. A.N. Isfahanya, H. Saghafiana, G. Borhanib: J. Alloys Compd., 2011, vol. 509, pp. 3931-36.

    Article  Google Scholar 

  7. C.O.A. Olsson and D. Landolt: Electrochim. Acta, 2003, vol. 48, pp. 1093-1104.

    Article  CAS  Google Scholar 

  8. J.H. Potgieter, P.A. Olubambi, L. Cornish, C.N. Machio, and E.-S.M. Sherif: Corros. Sci., 2008, vol. 50, pp. 2572-79.

    Article  CAS  Google Scholar 

  9. D. Wallinder, J. Pan, C. Leygraf and A. Delblanc-Bauer: Corros. Sci., 1998, vol. 41, pp. 275-89.

    Article  Google Scholar 

  10. S. Haupt and H.H. Strehblow: Corros. Sci., 1995, vol. 37, pp. 43-54.

    Article  CAS  Google Scholar 

  11. W. Fredriksson, D. Petrini, K. Edström, F. Björefors and L. Nyholm: Corro. Sci., 2013, vol. 67, pp. 268-80.

    Article  CAS  Google Scholar 

  12. R.D. Moser, P.M. Singh, L.F. Kahn and K.E. Kurtis: Corros. Sci., 2012, vol. 57, pp. 241-53.

    Article  CAS  Google Scholar 

  13. Y.B. Hu, C.F. Dong, M. Sun, K. Xiao, P. Zhong and X.G. Li: Corros. Sci., 2011, vol. 53, pp. 4159-65.

    Article  CAS  Google Scholar 

  14. S. Min, X. Kui, D. Chaofang, L. Xiaogang and Z. Ping: Acta Metall. Sinica, 2011, vol. 47, pp. 442-48.

    Google Scholar 

  15. Z.J. Yan, S. Min, L. Dabo, L. Xiaogang and L. Tianqi: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 282-89.

    Article  Google Scholar 

  16. A. Davydov, K.V. Rybalka, L.A. Beketaeva, G.R. Engelhardt, P. Jayaweera and D.D. MacDonald: Corros. Sci., 2005, vol. 47, pp. 195-215.

    Article  CAS  Google Scholar 

  17. M. Stratmann andJ. Müller: Corros. Sci., 1994, vol. 36, pp. 327-59.

    Article  CAS  Google Scholar 

  18. C.A. Della Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo and S.E. Kuri: Corros. Sci., 2012, vol. 57, pp. 154–61.

  19. X. Cheng, Z. Feng, C. Li, C. Dong and X. Li: Electrochim. Acta, 2011, vol. 56, pp. 5860-65.

    Article  CAS  Google Scholar 

  20. J.W. Schultze and M.M. Lohrengel: Electrochim. Acta, 2000, vol. 45, pp. 2499-513.

    Article  CAS  Google Scholar 

  21. M. Metikoš-Huković and R. Babić: Corros. Sci., 2007, vol. 49, pp. 3570-79.

    Article  Google Scholar 

  22. I. Betova, M. Bojinov, T. Laitinen, K. Mäkelä, P. Pohjanne and T. Saario: Corros. Sci., 2002, vol. 44, pp. 2699-723.

    Article  CAS  Google Scholar 

  23. S.E. Ziemniak and M. Hanson: Corros. Sci., 2002, vol. 44, pp. 2209-30.

    Article  CAS  Google Scholar 

  24. P.A. Schweitzer. Fundamentals of Metallic Corrosion. Corrosion Engineering Handbook, CRC Press, Boca Raton, Florida, 2007, pp. 34-35.

    Google Scholar 

  25. X. Tang and Y.F. Cheng: Electrochim. Acta, 2009, vol. 54, pp. 1499-1505.

    Article  CAS  Google Scholar 

  26. I. Annergren, M. Keddam, H. Takenouti and D. Thierry: Electrochim. Acta, 1997, vol. 42, pp. 1595-1611.

    Article  CAS  Google Scholar 

  27. I. Annergren, M. Keddam, H. Takenouti and D. Thierry: Electrochim. Acta, 1993, vol. 38, pp. 763-71.

    Article  CAS  Google Scholar 

  28. M. Keddam, O.R. Mattos and H. Takenouti: Electrochim. Acta, 1986, vol. 31, pp. 1159-65.

    Article  CAS  Google Scholar 

  29. D.D. MacDonald, K.M. Ismail and E. Sikora: J. Electrochem. Soc., 1998, vol. 145, pp. 3141-49.

    Article  CAS  Google Scholar 

  30. D.D. MacDonald: J. Electrochem. Soc., 1992, vol. 139, pp. 3434-49.

    Article  CAS  Google Scholar 

  31. Z. Feng, X. Cheng, C. Dong, L. Xu and X. Li: Corros. Sci., 2010, vol. 52, pp. 3646-53.

    Article  CAS  Google Scholar 

  32. H. Luo, C.F. Dong, K. Xiao and X.G. Li: Appl. Surf. Sci., 2011, vol. 258, pp. 631-39.

    Article  CAS  Google Scholar 

  33. A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, and N. Attarzadeh: Corros. Sci., 2011, vol. 53, pp. 3186-92.

    Article  CAS  Google Scholar 

  34. S. Ningshen, U. Kamachi Mudali, V.K. Mittal and H.S. Khatak: Corros. Sci., 2007, vol. 49, pp. 481-96.

    Article  CAS  Google Scholar 

  35. Z.H. Dong, W. Shi, G.A. Zhang and X.P. Guo: Electrochim. Acta, 2011, vol. 56, pp. 5890-97.

    Article  CAS  Google Scholar 

  36. D.D. MacDonald, A. Sun, N. Priyantha and P. Jayaweera: J. Electroanal. Chem., 2004, vol. 572, pp. 421-31.

    Article  CAS  Google Scholar 

  37. S. Fajardo, D.M. Bastidas, M.P. Ryan, M. Criado, D.S. McPhail and J.M. Bastidas: Appl. Surf. Sci., 2010, vol. 256, pp. 6139-43.

    Article  CAS  Google Scholar 

  38. Y. Zhang, D.D. MacDonald, M. Urquidi-MacDonald, G.R. Engelhardt and R.B. Dooley: Corros. Sci., 2006, vol. 48, pp. 3812-23.

    Article  CAS  Google Scholar 

  39. G. Goodlet, S. Faty, S. Cardoso, P.P. Freitas, A.M.P. Simões, M.G.S. Ferreira, and M. Da Cunha Belo: Corros. Sci., 2004, vol. 46, pp. 1479–99.

  40. L. Hamadou, A. Kadri and N. Benbrahim: Corros. Sci., 2010, vol. 52, pp. 859-64.

    Article  CAS  Google Scholar 

  41. M.H. Dean and U. Stimming: Corros. Sci., 1989, vol. 29, pp. 199-211.

    Article  CAS  Google Scholar 

  42. H. Tsuchiya and S. Fujimoto: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 195-200.

    Article  CAS  Google Scholar 

  43. V.A. Alves and C.M.A. Brett: Electrochim. Acta, 2002, vol. 47, pp. 2081-91.

    Article  CAS  Google Scholar 

  44. N.E. Hakiki, M.F. Montemor, M.G.S. Ferreira, and M. da Cunha Belo: Corros. Sci., 2000, vol. 42, pp. 687–702.

  45. C. Sunseri, S. Piazza and F.D. Quarto: J. Electrochem. Soc., 1990, vol. 137, pp. 2411-17.

    Article  CAS  Google Scholar 

  46. A.V. Sameljuk, O.D. Neikov, A.V. Krajnikov, Y.V. Milman and G.E. Thompson: Corros. Sci., 2004, vol. 46, pp. 147-58.

    Article  CAS  Google Scholar 

  47. A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi and N. Attarzadeh: Corros. Sci., 2011, vol. 53, pp. 3186-92.

    Article  CAS  Google Scholar 

  48. J. Chivot, L. Mendoza, C. Mansour, T. Pauporté and M. Cassir: Corros. Sci., 2008, vol. 50, pp. 62-69.

    Article  CAS  Google Scholar 

  49. M.J. Carmezim, A.M. Simões, M.O. Figueiredo, and M. Da Cunha Belo, Corros. Sci., 2002, vol. 44, pp. 451–65.

  50. M.J. Carmezim, A.M. Simões, M.F. Montemor, and M.D. Cunha Belo: Corros. Sci., 2005, vol. 47, pp. 581–91.

  51. C.R. Clayton, G.P. Halada and J.R. Kearns: Mater. Sci. Eng., A, 1995, vol. 198, pp. 135-44.

    Article  Google Scholar 

  52. N.E. Hakiki, M.F. Montemor, M.G.S. Ferreira, and M. da Cunha Belo: Corros. Sci., 2000, vol. 42, pp. 687–702.

  53. M. da Cunha Belo, B. Rondot, C. Compere, M.F. Montemor, A.M.P. Simões, and M.G.S. Ferreira: Corros. Sci., 1998, vol. 40, pp. 481–94.

Download references

Acknowledgments

The authors acknowledge the support of the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-11-006B) and the National Natural Science Foundation of China (Grant No. 51131005, 51171023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Sun.

Additional information

Manuscript submitted September 10, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Xiao, K., Dong, C. et al. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution. Metall Mater Trans A 44, 4709–4717 (2013). https://doi.org/10.1007/s11661-013-1834-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1834-4

Keywords

Navigation