Skip to main content
Log in

Hydrogen-Trapping Mechanisms in Nanostructured Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanoprecipitation-hardened martensitic bearing steels (100Cr6) and carbide-free nanobainitic steels (superbainite) are examined. The nature of the hydrogen traps present in both is determined via the melt extraction and thermal desorption analysis techniques. It is demonstrated that 100Cr6 can admit large amounts of hydrogen, which is loosely bound to dislocations around room temperature; however, with the precipitation of fine coherent vanadium carbide traps, hydrogen can be immobilized. In the case of carbide-free nanostructured bainite, retained austenite/bainite interfaces act as hydrogen traps, while concomitantly retained austenite limits hydrogen absorption. In nanostructured steels where active hydrogen traps are present, it is shown that the total hydrogen absorbed is proportional to the trapped hydrogen, indicating that melt extraction may be employed to quantify trapping capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andreone C, Murut A, (1990) . Metall. Trans. A 24:1453–1458

    Google Scholar 

  2. Barrow ATW, Kang JH, Rivera-Díaz-del-Castillo PEJ (2012). Acta Mater. 60: 2805–2815

    Article  CAS  Google Scholar 

  3. Barrow ATW, Rivera-Díaz-del-Castillo PEJ (2011) Acta Mater. 59:7155–7167

    Article  CAS  Google Scholar 

  4. W.Y. Choo and J.Y. Lee: J. Mater. Sci., 1982a, vol. 17, pp. 1930–38.

  5. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

  6. Craig BD, Krauss G (1980) . Metall Trans A 11A: 1799–1808

    CAS  Google Scholar 

  7. D. Eliezer and T. Boellinghaus: Proc. 2008 Int. Hydrogen Conf. ASM Int, 2008, pp. 438–48

  8. D. Enomoto and M. Hirakami: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1–10.

  9. Ferreira PJ, Robertson IM, Birnbaum HK (1999) . Acta. Mater.. 47:2991–2998

    Article  CAS  Google Scholar 

  10. S. Frappart, A. Oudriss, X. Feaugas, J. Creus, J. Bouhattate, F. Thébault, L. Delattre, and H. Marchebois: Scripta Mater., 2011, vol. 65, pp. 859–62

  11. C. Garcia-Mateo and F.G. Caballero: ISIJ Int., 2005, vol. 45, pp. 1736–40.

  12. C. Garcia-Mateo and F.G. Caballero, and H.K.D.H. Bhadeshia: ISIJ Int., 2003, vol. 43, pp. 1238–43

  13. W.W. Gerberich and T.J. Foecke: in Hydrogen Efects on Materials, N.R. Moody and A.W. Thompson, eds., TMS, Warendale, PA, 1990, pp. 687–701.

  14. W.W. Gerberich, R.A. Oriani, M. Lii, X. Chen, and T. Foecke: Philos. Mag. A, 1991, vol. 63, pp. 363–76

  15. Hagihara K, Takai Y, HiraiS K (2012) . ISIJ. Int.. 52:298–306

    Article  CAS  Google Scholar 

  16. Hong JY, Lee GW (1983) . J Mater 18:271–277.

    Article  CAS  Google Scholar 

  17. K. Horikawaa, N. Andoa, H. Kobayashia, and W. Urushiharab: Mater. Sci. Eng. A, 2012 , pp. 495–503.

  18. Kino N, Otani K (2003) . Soc Auto Eng 24:289–294

    CAS  Google Scholar 

  19. Lee SM, Lee J (1986) . Surf Coat Tech 28:301–314

    Article  CAS  Google Scholar 

  20. Li J, Oriani R, Darken L (1966) Zeitschrift fur Physikalische Chemie Neue Folge 49:271–290

    Article  CAS  Google Scholar 

  21. N. Luzginova: Ph.D. Thesis. Delft University of Technology, 2008.

  22. Maroef I, Olson DL, Eberhart M, Edwards GR, (2002) Int. Mater Rev 47:191–223

    Article  CAS  Google Scholar 

  23. Marsh PG, Gerberich WW (1994) Acta. Metall Mater 42:613–619

    Article  CAS  Google Scholar 

  24. Michler T, Balogh MP (2010) Int. J Hydrogen Energ 35: 9746–9754

    Article  CAS  Google Scholar 

  25. Nagumo M (2004) Mater. Sci Tech 20:940–950

    Article  CAS  Google Scholar 

  26. M. Nagumo and M. Nakamura: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 339–47

  27. M. Nagumo, H. Shimura, T. Chaya, H. Hayashi, and I. Ochiai: Mater. Sci. Eng. A, 2003, vol. 348, pp. 192–200.

  28. Nagumo M, Yagi T, Saitoh H (2000) Acta. Mater.. Aust.. 48: 943–951.

    Article  CAS  Google Scholar 

  29. Park A, Maroef YD, Landau A (2002) Weld. J. Law. Econ. Organ. 27S: 27–35

    Google Scholar 

  30. Pérez-Escobar D, Depover T, Duprez L, Verbeken K, Verhaege M (2012a) Acta. Mater.. Aust.. 60:2593–2605

    Article  Google Scholar 

  31. Pérez-Escobar D, Depover T, Wallaert E, Duprez L, Verhaege M, Verbeken K (2012b) Corros. Sci.. Agric.. 65:199–208

    Article  Google Scholar 

  32. Pérez-Escobar D, Verbeken K, Duprez L, Verhaege M (2012c) Mater. Sci Eng A 551:50–58

    Article  Google Scholar 

  33. G.M. Pressouyre: Metall. Trans. A, 1979, vol. 10A, pp. 1571–73

  34. Robertson IM (1999) Eng. Fract Mech 64: 649–637

    Article  Google Scholar 

  35. Scott PM (1985) Corros. Sci.. Agric.. 583:8–9

    Google Scholar 

  36. Szost BA, Rivera-Díaz-del-Castillo PEJ (2013) Scripta. Mater.. Aust.. 68:467–470

    Article  CAS  Google Scholar 

  37. Szost BA, Vegter RH, Rivera-Díaz-del-Castillo PEJ (2013) Mater. Des.. Codes. Crypt.. 43:499–506

    Article  CAS  Google Scholar 

  38. Tabata T, Birnbaum HK (1984) Scripta. Metall Mater 18: 18–231

    Google Scholar 

  39. Takahashi K, Kawakami K (2010) Scripta. Mater.. Aust.. 63: 261–264

    Article  CAS  Google Scholar 

  40. Takai K, Shoda H, Suzuki H, Nagumo M (2008) Acta. Mater.. Aust.. 56:5158–5167

    Article  CAS  Google Scholar 

  41. Takasawa K, Ishigaki R, Wada Y, Kayano R (2010) ISIJ. IEEP. 50: 1496–1502

    Article  CAS  Google Scholar 

  42. H. Uyama: in Wind Turbine Tribology Seminar, R. Errichello, S. Sheng, J. Keller, and A. Greco, eds., NSK Corporation, Bloomfield, CO, 2011, pp.14–16.

  43. T. Wei and F.G. Hara: in Effects of Hydrogen in Metals, P. Sofronis, B. Somerday, and R. Jones, eds., ASM International, Novelty, OH, 2009, pp. 456–63.

  44. Yamasaki S, Bhadeshia HKDH (2006) Proc. R Soc A 462:2315–2330

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the SKF Engineering & Research Centre and financed by SKF AB. The authors would like to express their sincere gratitude to Prof. A.L. Greer for the provision of laboratory facilities at the University of Cambridge and Mohammed Faid for his kind help with the TDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro E. J. Rivera-Díaz-del-Castillo.

Additional information

Manuscript submitted December 20, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szost, B.A., Vegter, R.H. & Rivera-Díaz-del-Castillo, P.E.J. Hydrogen-Trapping Mechanisms in Nanostructured Steels. Metall Mater Trans A 44, 4542–4550 (2013). https://doi.org/10.1007/s11661-013-1795-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1795-7

Keywords

Navigation