Skip to main content
Log in

Calculation of Interfacial Dislocation Structures: Revisit to the O-lattice Theory

  • Symposium: Solid-State Interfaces II: Toward an Atomistic-Scale Understanding of Structure, Properties, and Behavior through Theory and Experiment
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article clarifies a geometric method for calculating interfacial dislocation structures, to provide virtually unique initial dislocation structures for further relaxation. Ambiguities in specifying the misfit deformation and Burgers vectors are effectively eliminated. The physical basis for the method is a hypothesized periodicity correspondence between the structure within a good matching site (GMS) cluster (GMSC) and the conserved structure between dislocations. It is proposed to attribute each interfacial dislocation with a couple of correlated Burgers vectors. A set of Burgers vectors from each real lattice is identified according to the translation symmetry in a GMSC. A GMSC principle is suggested to guide the formulation of the deformation matrix A. The O-lattice theory is applied to quantify the distribution of GMSCs at the O-elements and poor matching regions at the O-cell walls. Configuration of dislocations in a general semicoherent interface is determined according to the effective O-cell wall traces in the interface. The relationship between GMS/GMSC and coincidence-site-lattice/O-lattice is elucidated for describing secondary dislocations. Several controversial issues on dislocation descriptions are discussed, including the decomposition of a net Burgers vector content, the influence of reference lattice, and the relationship between secondary dislocations and atomic steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Watanabe: J. Mater. Sci., 2011, vol. 46, pp. 4095–4115.

    Article  CAS  Google Scholar 

  2. A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials, Oxford University Press, Oxford, 1995.

    Google Scholar 

  3. L. Priester: Grain Boundaries: From Theory to Engineering, Springer, Dordrecht, 2013.

  4. D.A. Porter and K.E. Easterling: Phase transformations in metals and alloys, Chapman and Hall, New York, 1992.

    Book  Google Scholar 

  5. J.P. Hirth, R.C. Pond, R.G. Hoagland, X.-Y. Liu, and J. Wang: Prog. Mater. Sci., 2013. doi:10.1016/j.pmatsci.2012.10.002.

  6. M.J. Demkowicz, J. Wang, R.G. Hoagland, and H. John: in Dislocations in Solids, Elsevier, Amsterdam, 2008, pp. 141–205.

  7. X. Ma and R.C. Pond: J. Nucl. Mater., 2007, vol. 361, pp. 313–21.

    Article  CAS  Google Scholar 

  8. J.W. Christian: The Theory of Transformation in Metals and Alloys, 3rd ed., Pergamon Press, Oxford, UK, 2002.

    Google Scholar 

  9. J.P. Hirth and J. Lothe: Theory of Dislocations, 2 ed., Krieger publishig company, Malabar, Florida, 1992.

    Google Scholar 

  10. J.M. Howe: Interfaces in Materials, John Wiley and Sons, New York, 1997.

    Google Scholar 

  11. C.M. Sargent and G.R. Purdy: Phil. Mag., 1975, vol. 32, pp. 27–35.

  12. K.M. Knowles: Phil. Mag. A, 1982, vol. 46, pp. 951–69.

    Article  CAS  Google Scholar 

  13. W. Bollmann: Crystal defects and crystalline interfaces, Springer, Berlin, 1970.

    Book  Google Scholar 

  14. W. Bollmann: Crystal lattices, interfaces, matrices, Bollmann, Geneva, 1982.

    Google Scholar 

  15. W.-Z. Zhang: Applied Physics Letters, 2005, vol. 86, pp. 121919.

    Article  Google Scholar 

  16. A.P. Sutton and V. Vitek: Philos. Trans. R. Soc. Lond., 1983, vol. 309A, pp. 1–36.

  17. W. Bollmann: Phys. Stat. Sol., 1974, vol. A21, pp. 543–50.

    Article  Google Scholar 

  18. W. Bollmann and H.-U. Nissen: Acta Cryst., 1968, vol. 24A, pp. 546–57.

    Google Scholar 

  19. U. Dahmen: Acta Metallurgica, 1982, vol. 30, pp. 63–73.

    Article  CAS  Google Scholar 

  20. W.Z. Zhang and X.P. Yang: J. Mater. Sci., 2011, vol. 46, pp. 4135–56.

    Article  CAS  Google Scholar 

  21. R.W. Balluffi and T. Schober: Scripta Metallurgica, 1972, vol. 6, pp. 697–706.

    Article  Google Scholar 

  22. R. Bonnet and F. Durand: Philosophical Magazine, 1975, vol. 32, pp. 997–1006.

    Article  CAS  Google Scholar 

  23. R.W. Balluffi, A. Brokman and A.H. King: Acta Metallurgica, 1982, vol. 30, pp. 1453–70.

    Article  CAS  Google Scholar 

  24. W.–Z. Zhang and G.C. Weatherly: Progress in Materials Science 2005, vol. 50, pp. 181–292

    Article  CAS  Google Scholar 

  25. X. Yang and W. Zhang: Science China Technological Sciences, 2012, vol. 55, pp. 1343–52.

    Article  Google Scholar 

  26. M.G. Hall, H.I. Aaronson and K.R. Kinsman: Surface Science, 1972, vol. 31, pp. 257–74.

    Article  CAS  Google Scholar 

  27. Q. Liang and W.T. Reynolds, Jr.: Metall. Mater. Trans. A,, 1998, vol. 29A, pp. 2059–72.

    Article  CAS  Google Scholar 

  28. D. Qiu and W.–Z. Zhang: Acta Mater., 2007, vol. 55, pp. 6754–64.

    Article  CAS  Google Scholar 

  29. D.G. Brandon: Acta metallurgica, 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  30. C.M. Wayman: Introduction to the crystallography of martensitic transformations, MacMillan, New York, 1964.

    Google Scholar 

  31. W.–Z. Zhang and G.R. Purdy: Phil. Mag., 1993, vol. 68A, pp. 279–90.

    Google Scholar 

  32. F. Ye, W.–Z. Zhang and D. Qiu: Acta Materialia, 2006, vol. 54, pp. 5377–84.

    Article  CAS  Google Scholar 

  33. D. Qiu and W.–Z. Zhang: Acta Materialia, 2008, vol. 56, pp. 2003–14.

    Article  CAS  Google Scholar 

  34. R.C. Pond: in Dislocations in Solids, F.R.N. Nabarro, ed., North–Holland Publishing Company, Amsterdam, 1989, pp. 1–66.

  35. Y. Ikuhara and P. Pirouz: Materials Science Forum, 1996, vol. 207–209, pp. 121–24.

    Article  Google Scholar 

  36. A.R.S. Gautamy and J.M. Howe: Philosophical Magazine, 2011, vol. 91, pp. 3203–27.

    Article  Google Scholar 

  37. X.–F. Gu, W.–Z. Zhang and D. Qiu: Acta Mater., 2011, vol. 59, pp. 4944–56.

    Article  CAS  Google Scholar 

  38. M.–X. Zhang and P.M. Kelly: Prog. Mater. Sci., 2009, vol. 54, pp. 1101–70.

    Article  CAS  Google Scholar 

  39. J.M. Howe, R.C. Pond and J.P. Hirth: Prog. Mater. Sci., 2009, vol. 54, pp. 792–838.

    Article  CAS  Google Scholar 

  40. Z.-Z. Shi, F.-Z. Dai, M. Zhang, X.-F. Gu and W.-Z. Zhang: Metall. Mater. Trans., 2013. doi:10.1007/s11661-013-1633-y

  41. P.R. Howell, P.D. Southwick, R.C. Ecob and R.A. Ricks, in: H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, C.M. Wayman (Eds.) Solid to Solid Phase Transformations, TMS, Warrendale, USA, 1981, pp. 587–90.

    Google Scholar 

  42. T. Furuhara, J.M. Howe and H.I. Aaronson: Acta Metallurgica et Materialia, 1991, vol. 39, pp. 2873–86.

    Article  CAS  Google Scholar 

  43. W.-Z. Zhang and G.R. Purdy: Material Science Forum, 1993, vol. 126–128, pp. 563–66.

    Article  Google Scholar 

  44. F. Ye, W.–Z. Zhang and D. Qiu: Acta Materialia, 2004, vol. 52, pp. 2449–60.

    Article  CAS  Google Scholar 

  45. T. Furuhara, T. Ogawa and T. Maki: Philosophical Magazine Letters, 1995, vol. 72, pp. 175–83.

    Article  CAS  Google Scholar 

  46. Y.G. Wang and J.T.M. De Hosson: Journal of Materials Science Letters, 2001, vol. 20, pp. 389–92.

    Article  CAS  Google Scholar 

  47. F.R. Chen, S.K. Chiou, L. Chang and C.S. Hong: Ultramicroscopy, 1994, vol. 54, pp. 179–91.

    Article  CAS  Google Scholar 

  48. G. Dehm, J. Thomas, J. Mayer, T. Weissgarber, W. Pusche, and C. Sauer: Phil. Mag. A (Phys. Condens. Matter: Struct., Defects Mech. Properties), 1998, vol. 77, pp. 1531–54.

  49. G. Gutekunst, J. Mayer, V. Vitek and M. Ruhle: Pilos. Mag. A (Phys. Condens. Matter Struct. Defect Mech. Prop.), 1997, vol. 75, pp. 1357–82.

  50. J.M. Howe, U. Dahmen and R. Gronsky: Pilos. Mag. A (Phys. Condens. Matter Struct. Defect Mech. Prop.), 1987, vol. 56, pp. 31–67.

  51. X.-F. Gu and W.-Z. Zhang: Solid State Phenomena 2011, vol. 172–174, pp. 260–66.

    Article  Google Scholar 

  52. J.P. Hirth and R.C. Pond: Acta Materialia, 1996, vol. 44, pp. 4749–63.

    Article  CAS  Google Scholar 

  53. F.C. Frank: Acta Metallurgica, 1953, vol. 1, pp. 15–21.

    Article  CAS  Google Scholar 

  54. G.J. Shiflet and J.H. Van der Merwe: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1895–903.

    Article  Google Scholar 

  55. U. Dahmen: Scripta Metallurgica, 1987, vol. 21, pp. 1029–34.

    Article  CAS  Google Scholar 

  56. R.C. Pond, S. Celotto and J.P. Hirth: Acta Materialia, 2003, vol. 51, pp. 5385–98.

    Article  CAS  Google Scholar 

  57. R. Pond, X. Ma, Y. Chai and J. Hirth: in Dislocations in Solids, F.R.N. Nabarro and J.P. Hirth, eds., North-Holland, Amsterdam, 2007, pp. 225–61.

  58. P.M. Kelly, in: G.R. Olson, D.S. Lieberman, A. Saxena (Eds.) Proc. ICOMAT 2008, TMS publication, Santa Fe, NM, USA, 2008, pp. 115–21.

    Google Scholar 

  59. W.-Z. Zhang and G.R. Purdy: Phil. Mag., 1993, vol. 68A, pp. 291–303.

    Article  Google Scholar 

  60. X.-F. Gu and W.-Z. Zhang: Phil. Mag., 2010, vol. 90, pp. 4503 – 27

    Google Scholar 

  61. S.Q. Xiao and J.M. Howe: Acta Materialia, 2000, vol. 48, pp. 3253–60.

    Article  CAS  Google Scholar 

  62. J. Wu, W.–Z. Zhang and X.–F. Gu: Acta Materialia, 2009, vol. 57, pp. 635–45.

    Article  CAS  Google Scholar 

  63. W.–Z. Zhang, F. Ye, C. Zhang, Y. Qi and H.S. Fang: Acta Materialia, 2000, vol. 48, pp. 2209–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support is from the National Natural Science Foundation of China (Project No. 51171088) and from the National Basic Research Program of China (No. 2012CB619403). Figures in the article have been drawn with a program for calculating the O-lattice and O-cell structure for a general system mainly developed by Dr. X.P. Yang when he was a Ph.D. candidate in the author’s research group. This software is available upon request to either the author or Dr. Yang (yangxp@gmail.com). Valuable comments and helpful suggestions from Professor J.M. Howe, Professor T. Watanabe, Dr. R.F. Zhang, Dr. X. Liu, Dr. J. Wang, Dr. B. Xu, Dr. G.Z. Zhu and Dr. Z.Z. Shi are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Zheng Zhang.

Additional information

Manuscript submitted November 8, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WZ. Calculation of Interfacial Dislocation Structures: Revisit to the O-lattice Theory. Metall Mater Trans A 44, 4513–4531 (2013). https://doi.org/10.1007/s11661-013-1689-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1689-8

Keywords

Navigation