Skip to main content
Log in

Micro-scale modeling of interface-dominated mechanical behavior

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A micro-scale interface dislocation dynamics approach to model the mechanical behavior of crystalline nanolaminates is presented. To circumvent the exhaustive atomistic modeling of interfaces and dislocations in nanolaminates, an atomistically informed dislocation dynamics model was developed in which interfaces are categorized using a geometrical interface classification scheme and the interface-dominated mechanical response is related to nucleation, glide, and reactions of lattice and interface dislocations at/within/across interfaces. We show that such a scheme is effective in mapping the structure–property relations of various types of interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. The physics of dislocation climb at interfaces is an exception, since climb of dislocations occurs at a much longer time scale. In this case, the physics and related parameters need to be obtained from experiments, e.g., high-resolution TEM observations.

References

  1. Chen Y, Yu KY, Liu Y, Shao S, Wang H, Kirk MA, Wang J, Zhang X (2015) Damage-tolerant nanotwinned metals with nanovoids under radiation environments. Nat Commun 6:7036. doi:10.1038/ncomms8036

    Article  Google Scholar 

  2. Lu L, Chen X, Huang X, Lu K (2009) Revealing the maximum strength in nanotwinned copper. Science 323:607–610. doi:10.1126/science.1167641

    Article  Google Scholar 

  3. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824. doi:10.1016/j.actamat.2005.06.025

    Article  Google Scholar 

  4. Wang J, Zhou Q, Shao S, Misra A (2017) Strength and plasticity of nanolaminated materials. Mater Res Lett 5:1–19. doi:10.1080/21663831.2016.1225321

    Article  Google Scholar 

  5. Li N, Wang J, Misra A, Huang JY (2012) Direct observations of confined layer slip in Cu/Nb multilayers. Microsc Microanal 18:1155–1162. doi:10.1017/S143192761200133X

    Article  Google Scholar 

  6. Bronkhorst CAA, Kalidindi SRR, Anand L (1992) Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philos Trans R Soc Lond A 341:443–477. doi:10.1098/rsta.1992.0111

    Article  Google Scholar 

  7. Mourad HM, Garikipati K (2006) Advances in the numerical treatment of grain-boundary migration: coupling with mass transport and mechanics. Comput Methods Appl Mech Eng 196:595–607. doi:10.1016/j.cma.2006.06.005

    Article  Google Scholar 

  8. Tonks MR, Bingert JF, Bronkhorst CA, Harstad EN, Tortorelli DA (2009) Two stochastic mean-field polycrystal plasticity methods. J Mech Phys Solids 57:1230–1253. doi:10.1016/j.jmps.2009.04.013

    Article  Google Scholar 

  9. Wang H, Wu PD, Tomé CN, Wang J (2012) A constitutive model of twinning and detwinning for hexagonal close packed polycrystals. Mater Sci Eng A 555:93–98. doi:10.1016/j.msea.2012.06.038

    Article  Google Scholar 

  10. Wang H, Wu PD, Tomé CN, Wang J (2012) Study of lattice strains in magnesium alloy AZ31 based on a large strain elastic-viscoplastic self-consistent polycrystal model. Int J Solids Struct 49:2155–2167. doi:10.1016/j.ijsolstr.2012.04.026

    Article  Google Scholar 

  11. Artemev A, Wang Y, Khachaturyan A (2000) Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses. Acta Mater 48:2503–2518. doi:10.1016/S1359-6454(00)00071-9

    Article  Google Scholar 

  12. Wang H, Wu PD, Wang J (2013) Modeling inelastic behavior of magnesium alloys during cyclic loading–unloading. Int J Plast 47:49–64. doi:10.1016/j.ijplas.2013.01.007

    Article  Google Scholar 

  13. Wang J, Zhou C, Beyerlein IJ, Shao S (2014) Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM 66:102–113. doi:10.1007/s11837-013-0808-8

    Article  Google Scholar 

  14. Zbib HM, Rhee M, Hirth JP (1998) On plastic deformation and the dynamics of 3D dislocations. Int J Mech Sci 40:113–127. doi:10.1016/S0020-7403(97)00043-X

    Article  Google Scholar 

  15. Ghoniem N, Tong S-H, Sun L (2000) Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys Rev B 61:913–927. doi:10.1103/PhysRevB.61.913

    Article  Google Scholar 

  16. Shao S, Wang J, Misra A, Hoagland RG (2013) Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces. Sci Rep. doi:10.1038/srep02448

    Google Scholar 

  17. Zheng S, Shao S, Zhang J, Wang Y, Demkowicz MJ, Beyerlein IJ, Mara NA (2015) Adhesion of voids to bimetal interfaces with non-uniform energies. Sci Rep. doi:10.1038/srep15428

    Google Scholar 

  18. Shao S, Wang J (2015) Relaxation mechanisms, structure and properties of semi-coherent interfaces. Metals (Basel). doi:10.3390/met5041887

    Google Scholar 

  19. Shao S, Wang J (2016) Relaxation, structure, and properties of semicoherent interfaces. JOM 68:242–252. doi:10.1007/s11837-015-1691-2

    Article  Google Scholar 

  20. Wang J, Zhang RF, Zhou CZ, Beyerlein IJ, Misra A (2014) Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int J Plast 53:40–55. doi:10.1016/j.ijplas.2013.07.002

    Article  Google Scholar 

  21. Wang J, Kang K, Zhang RF, Zheng SJ, Beyerlein IJ, Mara NA (2012) Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM 64:1208–1217. doi:10.1007/s11837-012-0429-7

    Article  Google Scholar 

  22. Kang K, Wang J, Zheng SJ, Beyerlein IJ (2012) Minimum energy structures of faceted, incoherent interfaces. J Appl Phys 112:73501. doi:10.1063/1.4755789

    Article  Google Scholar 

  23. Wang J, Zhang R, Zhou C, Beyerlein IJ, Misra A (2013) Characterizing interface dislocations by atomically informed Frank–Bilby theory. J Mater Res 28:1646–1657. doi:10.1557/jmr.2013.34

    Article  Google Scholar 

  24. Hirth JP, Pond RC, Hoagland RG, Liu X-Y, Wang J (2013) Interface defects, reference spaces and the Frank–Bilby equation. Prog Mater Sci 58:749–823. doi:10.1016/j.pmatsci.2012.10.002

    Article  Google Scholar 

  25. Wang J, Beyerlein IJ, Mara NA, Bhattacharyya D (2011) Interface-facilitated deformation twinning in copper within submicron Ag–Cu multilayered composites. Scr Mater 64:1083–1086. doi:10.1016/j.scriptamat.2011.02.025

    Article  Google Scholar 

  26. Demkowicz M, Hoagland R, Hirth J (2008) Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys Rev Lett 100:136102. doi:10.1103/PhysRevLett.100.136102

    Article  Google Scholar 

  27. Wang J, Hoagland RG, Hirth JP, Misra A (2008) Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater 56:5685–5693. doi:10.1016/j.actamat.2008.07.041

    Article  Google Scholar 

  28. Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci 15:20–28. doi:10.1016/j.cossms.2010.09.002

    Article  Google Scholar 

  29. Demkowicz MJ, Wang J, Hoagland RG (2008) Interfaces between dissimilar crystalline solids. In: Hirth JP (ed) Dislocations in solids. Elsevier B.V, Amsterdam, pp 141–205. doi:10.1016/S1572-4859(07)00003-4

    Google Scholar 

  30. Kolluri K, Demkowicz MJ (2012) Formation, migration, and clustering of delocalized vacancies and interstitials at a solid-state semicoherent interface. Phys Rev B Condens Matter Mater Phys. doi:10.1103/PhysRevB.85.205416

    Google Scholar 

  31. Kashinath A, Misra A, Demkowicz MJ (2013) Stable storage of helium in nanoscale platelets at semicoherent interfaces. Phys Rev Lett. doi:10.1103/PhysRevLett.110.086101

    Google Scholar 

  32. Demkowicz MJ, Misra A, Caro A (2012) The role of interface structure in controlling high helium concentrations. Curr Opin Solid State Mater Sci 16:101–108. doi:10.1016/j.cossms.2011.10.003

    Article  Google Scholar 

  33. Beyerlein IJ, Demkowicz MJ, Misra A, Uberuaga BP (2015) Defect–interface interactions. Prog Mater Sci 74:125–210. doi:10.1016/j.pmatsci.2015.02.001

    Article  Google Scholar 

  34. Wang J, Hoagland RG, Misra A (2009) Mechanics of nanoscale metallic multilayers: from atomic-scale to micro-scale. Scr Mater 60:1067–1072. doi:10.1016/j.scriptamat.2008.11.035

    Article  Google Scholar 

  35. Wang J, Hoagland RG, Hirth JP, Misra A (2008) Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater 56:3109–3119. doi:10.1016/j.actamat.2008.03.003

    Article  Google Scholar 

  36. Liu XY, Hoagland RG, Wang J, Germann TC, Misra A (2010) The influence of dilute heats of mixing on the atomic structures, defect energetics and mechanical properties of fcc–bcc interfaces. Acta Mater 58:4549–4557. doi:10.1016/j.actamat.2010.05.008

    Article  Google Scholar 

  37. Wang J, Hoagland RG, Misra A (2009) Room-temperature dislocation climb in metallic interfaces. Appl Phys Lett 94:131910. doi:10.1063/1.3111137

    Article  Google Scholar 

  38. Wang J, Anderoglu O, Hirth JP, Misra A, Zhang X (2009) Dislocation structures of Σ3 112 twin boundaries in face centered cubic metals. Appl Phys Lett 95:21908. doi:10.1063/1.3176979

    Article  Google Scholar 

  39. Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang JY, Hirth JP (2010) Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater 58:2262–2270. doi:10.1016/j.actamat.2009.12.013

    Article  Google Scholar 

  40. Li N, Wang J, Wang YQ, Serruys Y, Nastasi M, Misra A (2013) Incoherent twin boundary migration induced by ion irradiation in Cu. J Appl Phys 113:23508. doi:10.1063/1.4774242

    Article  Google Scholar 

  41. Wang J, Misra A, Hoagland RG, Hirth JP (2012) Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater 60:1503–1513. doi:10.1016/j.actamat.2011.11.047

    Article  Google Scholar 

  42. Wang J, Hoagland RG, Misra A (2008) Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition. J Mater Res 23:1009–1014. doi:10.1557/jmr.2008.0120

    Article  Google Scholar 

  43. Zhang RF, Wang J, Beyerlein IJ, Misra A, Germann TC (2012) Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces. Acta Mater 60:2855–2865. doi:10.1016/j.actamat.2012.01.050

    Article  Google Scholar 

  44. Shao S, Wang J, Beyerlein IJ, Misra A (2015) Glide dislocation nucleation from dislocation nodes at semi-coherent 111 Cu–Ni interfaces. Acta Mater 98:206–220. doi:10.1016/j.actamat.2015.07.044

    Article  Google Scholar 

  45. Li N, Wang J, Misra A, Zhang X, Huang JY, Hirth JP (2011) Twinning dislocation multiplication at a coherent twin boundary. Acta Mater 59:5989–5996. doi:10.1016/j.actamat.2011.06.007

    Article  Google Scholar 

  46. Han WZ, Carpenter JS, Wang J, Beyerlein IJ, Mara NA (2012) Atomic-level study of twin nucleation from face-centered-cubic/body- centered-cubic interfaces in nanolamellar composites. Appl Phys Lett. doi:10.1063/1.3675447

    Google Scholar 

  47. Liu Y, Bufford D, Wang H, Sun C, Zhang X (2011) Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater 59:1924–1933. doi:10.1016/j.actamat.2010.11.057

    Article  Google Scholar 

  48. Barshilia HC, Rajam KS (2002) Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf Coat Technol 155:195–202. doi:10.1016/S0257-8972(02)00008-7

    Article  Google Scholar 

  49. Huang H, Wang J (2003) Surface kinetics: step-facet barriers. Appl Phys Lett 83:4752–4754. doi:10.1063/1.1631389

    Article  Google Scholar 

  50. Wang J, Huang H, Cale TS (2004) Diffusion barriers on Cu surfaces and near steps. Model Simul Mater Sci Eng 12:1209–1225. doi:10.1088/0965-0393/12/6/014

    Article  Google Scholar 

  51. Misra A, Hirth JP, Hoagland RG, Embury JD, Kung H (2004) Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater 52:2387–2394. doi:10.1016/j.actamat.2004.01.029

    Article  Google Scholar 

  52. Phillips MA, Clemens BM, Nix WD (2003) A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers. Acta Mater 51:3157–3170. doi:10.1016/S1359-6454(03)00127-7

    Article  Google Scholar 

  53. Kang K, Wang J, Beyerlein IJ (2012) Atomic structure variations of mechanically stable fcc–bcc interfaces. J Appl Phys 111:53531. doi:10.1063/1.3693015

    Article  Google Scholar 

  54. Salehinia I, Shao S, Wang J, Zbib HM (2015) Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Mater. doi:10.1016/j.actamat.2014.12.026

    Google Scholar 

  55. Derlet M, Hoagland R, Li J, Mcdowell DL, Van Swygenhoven H, Wang J (2009) Atomistic simulations of dislocations in confined volumes. MRS Bull 34:184–189. doi:10.1557/mrs2009.50

    Article  Google Scholar 

  56. Kramer DE, Foecke T (2002) Transmission electron microscopy observations of deformation and fracture in nanolaminated Cu–Ni thin films. Philos Mag Phys Condens Matter Struct Defects Mech Prop 82:3375–3381. doi:10.1080/01418610210124478

    Google Scholar 

  57. Tian YZ, Zhang ZF (2012) Bulk eutectic Cu–Ag alloys with abundant twin boundaries. Scr Mater 66:65–68. doi:10.1016/j.scriptamat.2011.09.024

    Article  Google Scholar 

  58. Zheng SJ, Wang J, Carpenter JS, Mook WM, Dickerson PO, Mara NA, Beyerlein IJ (2014) Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater 79:282–291. doi:10.1016/j.actamat.2014.07.017

    Article  Google Scholar 

  59. Jang D, Li X, Gao H, Greer JR (2012) Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotechnol 7:594–601. doi:10.1038/nnano.2012.116

    Article  Google Scholar 

  60. Chen Y, Shao S, Liu X-Y, Yadav SK, Li N, Mara N, Wang J (2017) Misfit dislocation patterns of Mg–Nb interfaces. Acta Mater 126:552–563. doi:10.1016/j.actamat.2016.12.041

    Article  Google Scholar 

  61. Shao S, Wang J, Misra A (2014) Energy minimization mechanisms of semi-coherent interfaces. J Appl Phys 116:23508. doi:10.1063/1.4889927

    Article  Google Scholar 

  62. Salehinia I, Shao S, Wang J, Zbib HMM (2014) Plastic deformation of metal/ceramic nanolayered composites. JOM 66:2078–2085. doi:10.1007/s11837-014-1132-7

    Article  Google Scholar 

  63. Sun PL, Chu JP, Lin TY, Shen YL, Chawla N (2010) Characterization of nanoindentation damage in metal/ceramic multilayered films by transmission electron microscopy (TEM). Mater Sci Eng A 527:2985–2992. doi:10.1016/j.msea.2010.01.040

    Article  Google Scholar 

  64. Zhang X, Zhang B, Mu Y, Shao S, Wick CD, Ramachandran BR, Meng WJ (2017) Mechanical failure of metal/ceramic interfacial regions under shear loading. Acta Mater 138:224–236. doi:10.1016/j.actamat.2017.07.053

    Article  Google Scholar 

  65. Beyerlein IJ, Wang J, Zhang R (2013) Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater 61:7488–7499. doi:10.1016/j.actamat.2013.08.061

    Article  Google Scholar 

  66. Beyerlein IJ, Wang J, Zhang R (2013) Interface-dependent nucleation in nanostructured layered composites. APL Mater. doi:10.1063/1.4820424

    Google Scholar 

  67. Hoagland RG, Valone SM (2015) Emission of dislocations from grain boundaries by grain boundary dissociation. Philos Mag 95:112–131. doi:10.1080/14786435.2014.987842

    Article  Google Scholar 

  68. Zhang RF, Wang J, Beyerlein IJ, Germann TC (2011) Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scr Mater 65:1022–1025. doi:10.1016/j.scriptamat.2011.09.008

    Article  Google Scholar 

  69. Zhang RF, Beyerlein IJ, Zheng SJ, Zhang SH, Stukowski A, Germann TC (2016) Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps. Acta Mater 113:194–205. doi:10.1016/j.actamat.2016.05.015

    Article  Google Scholar 

  70. Yang W, Ayoub G, Salehinia I, Mansoor B, Zbib H (2017) Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta Mater 122:99–108. doi:10.1016/j.actamat.2016.09.039

    Article  Google Scholar 

  71. Zbib HM, Díaz De La Rubia T, Rhee M, Hirth JP (2000) 3D dislocation dynamics: stress–strain behavior and hardening mechanisms in fcc and bcc metals. J Nucl Mater 276:154–165. doi:10.1016/S0022-3115(99)00175-0

    Article  Google Scholar 

  72. Fitzgerald EA, Kim AY, Currie MT, Langdo TA, Taraschi G, Bulsara MT (1999) Dislocation dynamics in relaxed graded composition semiconductors. Mater Sci Eng B Solid-State Mater Adv Technol 67:53–61. doi:10.1016/S0921-5107(99)00209-3

    Article  Google Scholar 

  73. Rhee M, Zbib HM, Hirth JP, Huang H, de la Rubia T (1998) Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals. Model Simul Mater Sci Eng 6:467–492. doi:10.1088/0965-0393/6/4/012

    Article  Google Scholar 

  74. Fertig RS, Baker SP (2009) Simulation of dislocations and strength in thin films: a review. Prog Mater Sci 54:874–908. doi:10.1016/j.pmatsci.2009.03.004

    Article  Google Scholar 

  75. Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15:553–595. doi:10.1088/0965-0393/15/6/001

    Article  Google Scholar 

  76. Shehadeh MA, Bringa EM, Zbib HM, McNaney JM, Remington BA (2006) Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl Phys Lett 89:171918. doi:10.1063/1.2364853

    Article  Google Scholar 

  77. Overman NR, Overman CT, Zbib HM, Bahr DF (2009) Yield and deformation in biaxially stressed multilayer metallic thin films. J Eng Mater Technol 131:41203. doi:10.1115/1.3183775

    Article  Google Scholar 

  78. Soer WA, De Hosson JTM, Minor AM, Morris JW, Stach EA (2004) Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater 52:5783–5790. doi:10.1016/j.actamat.2004.08.032

    Article  Google Scholar 

  79. Shao S, Abdolrahim N, Bahr DF, Lin G, Zbib HM (2014) Stochastic effects in plasticity in small volumes. Int J Plast. doi:10.1016/j.ijplas.2013.09.005

    Google Scholar 

  80. Greer JR, Weinberger CR, Cai W (2008) Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: compression experiments and dislocation dynamics simulations. Mater Sci Eng A 493:21–25. doi:10.1016/j.msea.2007.08.093

    Article  Google Scholar 

  81. Weygand D, Poignant M, Gumbsch P, Kraft O (2008) Three-dimensional dislocation dynamics simulation of the influence of sample size on the stress-strain behavior of fcc single-crystalline pillars. Mater Sci Eng Struct Mater Prop Microstruct Process 483:188–190. doi:10.1016/j.msea.2006.09.183

    Article  Google Scholar 

  82. Yashiro K, Kurose F, Nakashima Y, Kubo K, Tomita Y, Zbib HM (2006) Discrete dislocation dynamics simulation of cutting of γ′ precipitate and interfacial dislocation network in Ni-based superalloys. Int J Plast 22:713–723. doi:10.1016/j.ijplas.2005.05.004

    Article  Google Scholar 

  83. Espinosa HD, Panico M, Berbenni S, Schwarz KW (2006) Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding FCC thin films. Int J Plast 22:2091–2117. doi:10.1016/j.ijplas.2006.01.007

    Article  Google Scholar 

  84. Vattré A, Devincre B, Roos A (2009) Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ′ volume fraction. Intermetallics 17:988–994. doi:10.1016/j.intermet.2009.04.007

    Article  Google Scholar 

  85. Akasheh F, Zbib HM, Hirth JP, Hoagland RG, Misra A (2007) Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. J Appl Phys 102:34314. doi:10.1063/1.2757082

    Article  Google Scholar 

  86. Akasheh F, Zbib HM, Hirth JP, Hoagland RG, Misra A (2007) Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J Appl Phys 101:84314. doi:10.1063/1.2721093

    Article  Google Scholar 

  87. Li N, Yadav SK, Liu X-Y, Wang J, Hoagland RG, Mara N, Misra A (2015) Quantification of dislocation nucleation stress in TiN through high-resolution in situ indentation experiments and first principles calculations. Sci Rep 5:15813. doi:10.1038/srep15813

    Article  Google Scholar 

  88. Li N, Wang H, Misra A, Wang J (2014) In situ nanoindentation study of plastic co-deformation in Al–TiN nanocomposites. Sci Rep 4:6633. doi:10.1038/srep06633

    Article  Google Scholar 

  89. Yadav SK, Shao S, Wang J, Liu X-Y (2015) Structural modifications due to interface chemistry at metal-nitride interfaces. Sci Rep 5:17380. doi:10.1038/srep17380

    Article  Google Scholar 

  90. Yadav SK, Ramprasad R, Misra A, Liu XY (2012) First-principles study of shear behavior of Al, TiN, and coherent Al/TiN interfaces. J Appl Phys. doi:10.1063/1.3703663

    Google Scholar 

  91. Yadav SK, Ramprasad R, Wang J, Misra A, Liu X-Y (2014) First-principles study of Cu/TiN and Al/TiN interfaces: weak versus strong interfaces. Model Simul Mater Sci Eng 22:35020. doi:10.1088/0965-0393/22/3/035020

    Article  Google Scholar 

  92. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434. doi:10.1016/0021-9991(76)90041-3

    Article  Google Scholar 

  93. Wang J, Misra A (2014) Strain hardening in nanolayered thin films. Curr Opin Solid State Mater Sci 18:19–28. doi:10.1016/j.cossms.2013.10.003

    Article  Google Scholar 

  94. Bhattacharyya D, Mara NAA, Dickerson P, Hoagland RGG, Misra A (2011) Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater 59:3804–3816. doi:10.1016/j.actamat.2011.02.036

    Article  Google Scholar 

  95. Tan XH, Shen YL (2005) Modeling analysis of the indentation-derived yield properties of metallic multilayered composites. Compos Sci Technol 65:1639–1646. doi:10.1016/j.compscitech.2004.12.051

    Article  Google Scholar 

  96. Tang G, Shen YL, Singh DRP, Chawla N (2010) Indentation behavior of metal-ceramic multilayers at the nanoscale: numerical analysis and experimental verification. Acta Mater 58:2033–2044. doi:10.1016/j.actamat.2009.11.046

    Article  Google Scholar 

  97. Marin EB (2006) On the formulation of a crystal plasticity model, Livermore, CA. http://prod.sandia.gov/techlib/access-control.cgi/2006/064170.pdf

  98. Groh S, Marin EB, Horstemeyer MF, Zbib HM (2009) Multiscale modeling of the plasticity in an aluminum single crystal. Int J Plast 25:1456–1473. doi:10.1016/j.ijplas.2008.11.003

    Article  Google Scholar 

  99. Marin EB, Dawson PR (1998) On modelling the elasto-viscoplastic response of metals using polycrystal plasticity. Comput Methods Appl Mech Eng 165:1–21. doi:10.1016/S0045-7825(98)00034-6

    Article  Google Scholar 

  100. Lebensohn RA, Tomé CN (1994) A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Mater Sci Eng A 175:71–82. doi:10.1016/0921-5093(94)91047-2

    Article  Google Scholar 

  101. Wang H, Wu PD, Tomé CN, Huang Y (2010) A finite strain elastic-viscoplastic self-consistent model for polycrystalline materials. J Mech Phys Solids 58:594–612. doi:10.1016/j.jmps.2010.01.004

    Article  Google Scholar 

  102. Bronkhorst CA, Mayeur JR, Beyerlein IJ, Mourad HM, Hansen BL, Mara NA, Carpenter JS, McCabe RJ, Sintay SD (2013) Meso-scale modeling the orientation and interface stability of Cu/Nb-layered composites by rolling. JOM 65:431–442. doi:10.1007/s11837-012-0541-8

    Article  Google Scholar 

  103. Wang H, Wu PD, Wang J, Tomé CN (2013) A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int J Plast 49:36–52. doi:10.1016/j.ijplas.2013.02.016

    Article  Google Scholar 

  104. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211. doi:10.1016/j.actamat.2009.10.058

    Article  Google Scholar 

Download references

Acknowledgements

S.S. acknowledges the seed grant provided by the Louisiana State Board of Regents under contract number NSF(2017)-CIMMSeed-08. A.M. and J.W. acknowledge research sponsorship by DOE, Office of Basic Energy sciences. H.H. gratefully acknowledges the sponsorship of US Department of Energy Office of Basic Energy Science (DE-SC0014035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Shao or Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Misra, A., Huang, H. et al. Micro-scale modeling of interface-dominated mechanical behavior. J Mater Sci 53, 5546–5561 (2018). https://doi.org/10.1007/s10853-017-1662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1662-9

Keywords

Navigation