Skip to main content

Advertisement

Log in

Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stress rupture behavior and microstructure evolution of nickel-based superalloy Waspaloy specimens from tenon teeth of an as-received 60,000-hour service-exposed gas turbine disk were studied between 923 K and 1088 K (650 °C and 815 °C) under initial applied stresses varying from 150 to 840 MPa. Good microstructure stability and performance were verified for this turbine disk prior to stress rupture testing. Microstructure instability, such as the coarsening and dissolution of γ′ precipitates at the varying test conditions, was observed to be increased with temperature and reduced stress. Little microstructure variation was observed at 923 K (650 °C). Only secondary γ′ instability occurred at 973 K (700 °C). Four fracture mechanisms were obtained. Transgranular creep fracture was exhibited up to 923 K (650 °C) and at high stress. A mixed mode of transgranular and intergranular creep fracture occurred with reduced stress as a transition to intergranular creep fracture (ICF) at low stress. ICF was dominated by grain boundary sliding at low temperature and by the nucleation and growth of grain boundary cavities due to microstructure instability at high temperature. The fracture mechanism map and microstructure-related fracture model were constructed. Residual lifetime was also evaluated by the Larson–Miller parameter method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. Waspaloy is a trademark of Special Metals Corporation, New Hartford, NY.

References

  1. S.L. Semiatin, P.N. Fagin, M.G. Glavicic and D. Raabe: Scripta Mater., 2004, vol. 50, pp. 625-29.

    Article  CAS  Google Scholar 

  2. Z.H. Yao, J.X. Dong and M.C. Zhang: Acta Metall. Sin., 2011, vol. 12, pp. 1581-90.

    Google Scholar 

  3. M. Gao and R.P. Wei: Scripta Metall., 1994, vol. 30 (8), pp. 1009-14.

    Article  CAS  Google Scholar 

  4. M. Brogdon and A.H. Rosenberger: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 583–88.

  5. V.S.K.G. Kelekanjeri, L.K. Moss, R.A. Gerhardt and J. Ilavsky: Acta Mater., 2009, vol. 57, pp. 4658-70.

    Article  CAS  Google Scholar 

  6. R.J. Moat, A.J. Pinkerton, L. Li, P.J. Withers, and M. Preuss: Mater. Sci. Eng. A, 2011, 528 (6), pp. 2288–98.

  7. V.S. Kumar, G. Kelekanjeri and R.A. Gerhardt: Electrochim. Acta, 2006, vol. 51, pp. 1873-80.

    Article  Google Scholar 

  8. K. Tokoro, N.P. Wikstrom, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2008, vol. 477, pp. 311–18.

  9. A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 729–44.

  10. V.S.K. Kelekanjeri and R.A. Gerhardt: Acta Mater., 2009, vol. 57, pp. 616-27.

    Article  CAS  Google Scholar 

  11. J. Tsang, R.M. Kearsey, P. Au, D. Seo, S. Oppenheimer and W. Cao: Mater. High Temp., 2010, vol. 27, pp. 79-88.

    Article  CAS  Google Scholar 

  12. B. Wilshire and P.J. Scharning: Mater. Sci. Technol., 2009, vol. 25, pp. 242-48.

    Article  CAS  Google Scholar 

  13. M.P. Jackson and R.C. Reed: Mater. Sci. Eng. A, 1999, vol. 259, pp. 85–97.

  14. X.Liu and B. Kang: Mater. Sci. Eng. A, 2003, vol. 340, pp. 8–14.

  15. J. Busby: Metall. Met. Form., 1972, pp. 325–28.

  16. L. Liu, F. Sommer and H.Z. Fu: Scripta Metall. Mater., 1994, vol. 30 (5), pp. 587-91.

    Article  CAS  Google Scholar 

  17. T.J. Garosshen and G.P. McCarthy: Metall. Trans. A, 1985, vol. 16A, pp. 1213–23.

    CAS  Google Scholar 

  18. R.A. Stevens and P.E.J. Flewitt: Mater. Sci. Eng., 1979, vol. 37 A, pp. 237–47.

  19. A.K. Koul and R. Castillo: Metall. Trans. A, 1988, vol. 19A, pp. 2049–66.

  20. W. Sha: Scripta Mater., 2000, vol. 42, pp. 549-53.

    Article  CAS  Google Scholar 

  21. C.M.F. Rae and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 4113-25.

    Article  CAS  Google Scholar 

  22. X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, J.S. Hou and H.Q. Ye: Mater. Sci. Eng., 2008, vol. 485 (25) A, pp. 74-79.

    Google Scholar 

  23. K.M. Chang and X.B. Liu: Mater. Sci. Eng., 2001, vol. 308 A, pp. 1-8.

    Article  Google Scholar 

  24. Y. Lindblom and G. Engberg: in High Temperature Alloys for Gas Turbines, R. Brunetard, D. Coutsouradis, T.B. Gibbons, Y. Lindblom, D.B. Meadowcroft and R. Stickler, eds., D. Reidel, Dordrecht, 1982, pp. 447–54.

  25. W.L. Kimmerle, J.K. Tien and W.H. Couts: Scripta Metall., 1987, vol. 21, pp. 1553-57.

    Article  CAS  Google Scholar 

  26. T.H. Hyde, L. Xia, A.A. Becker and W. Sun: Fatigue Fract. Eng. Mater. Struct., 1997, vol. 20, pp. 1295-03.

    Article  CAS  Google Scholar 

  27. C.G. McKamey and E.P. George: Creep Fract. Eng. Mater. Struct., The Institute of Materials, London, 2001, pp. 393–99.

  28. H. J. Frost and M. F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Elmsford, NY, 1982.

    Google Scholar 

  29. D. Teirlinck, F. Zok, J.D. Embury and M.F. Ashby: Acta Metall., 1988, vol. 36, pp. 1213-28.

    Article  CAS  Google Scholar 

  30. A.N. Stroh: Proc. R. Soc., London A, 1954, vol. 223, pp. 404–14.

  31. D.A. Curry: Met. Sci., 1980, vol. 14, pp. 319-26.

    CAS  Google Scholar 

  32. R. R. Unocic, G. B. Viswanathan, P. M. Sarosi, S. Karthikeyan, J. Li and M. J. Mills: Mater. Sci. Eng., 2008, vol. A483-484, pp. 25-32.

    Google Scholar 

  33. A. Epishin, T. Link, H. Harada, Y. Koizumi, and T. Kobayashi: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, eds., The Minerals, Metals and Materials Society, 2004, pp. 137–143.

  34. Y. Yuan, Y. F. Gu, C. Y. Cui, T. Osada, T. Tetsui, T. Yokokawa, and H. Harada: Mater. Sci. Eng., 2011, vol. 528 A, pp. 5106–11.

  35. J. X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, and T. Kobayashi: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, eds., The Minerals, Metals and Materials Society, 2004, pp. 189–95.

  36. K. Kakehi: Mater. Sci. Eng. A, 2000, vol. 278 A, pp. 135–41.

  37. H.J. Penkalla, J. Wosik and A.C. Filemonowicz: Mater. Chem. and Phys., 2003, vol. 81, pp. 417-23.

    Article  CAS  Google Scholar 

  38. J. Wosik, B. Dubiel, A. Kruk, H.J. Penkalla, F. Schubert and A. C. Filemonowicz: Mater. Charact., 2001, vol. 46, pp. 119-23.

    Article  CAS  Google Scholar 

  39. F. D. Rosi and F. C. Perkins: J. Metals, 1953, vol. 5, pp. 1083-84.

    Google Scholar 

  40. S.J. Zinkle and G.E. Lucas: in Fusion Materials Semi-annual Progress Report for Period ending. June 30, 2003, DOE/ER-0313/34, Oak Ridge National Laboratory, 2003, pp. 101–25.

  41. S. Xu, X. J. Wu, A. K. Koul and J. I. Dickson: Metall. Mater. Trans., 1999, vol. 30A, pp. 1039-45.

    Article  CAS  Google Scholar 

  42. X.J. Wu and A.K. Koul: in Creep and Stress Relaxation in Miniature Structures and Components, H.D. Merchant, ed., TMS, 1996, pp. 3–19.

  43. X.J. Wu and A.K. Koul: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 905–14.

  44. S. Xu, A.K. Koul, and J.I. Dickson: Metall. Mater. Trans., 2001, vol. 32 A, pp. 795-804.

    CAS  Google Scholar 

  45. A.K. Ray, Y.N. Tiwari, P.K. Roy, and S. Chaudhuri: Mater. Sci. Eng. A, 2007, vol. 454, pp. 679–84.

  46. P. Dowson, D. Rishcl and N. Bornstcin: Proceedings of the Twenty-fourth Turomachinery symposium, Texas A&M University, Colloge station, Texas, 1995, pp. 11-26.

    Google Scholar 

  47. H. J. Kim: Eng. Failure Anal., 2005, vol. 12, pp. 578-85.

    Article  Google Scholar 

  48. A. Kim, K. Tunvir, S.H. Nahm and S.S. Cho: J. Mater. Process. Technol., 2008, vol. 202, pp. 450-56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor X.S. Xie for his helpful and rewarding comments on the stress rupture behavior. The work presented here was funded by the National Natural Science Foundation of China (51071017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Yao.

Additional information

Waspaloy is a trademark of Special Metals Corporation, New Hartford, NY.

Manuscript submitted January 27, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z., Zhang, M. & Dong, J. Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy. Metall Mater Trans A 44, 3084–3098 (2013). https://doi.org/10.1007/s11661-013-1660-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1660-8

Keywords

Navigation