Skip to main content
Log in

Preparation of Freestanding Zn Nanocrystallites by Combined Milling at Cryogenic and Room Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present investigation reports the preparation of freestanding nanocrystalline Zn by combined mechanical milling at cryogenic and room temperatures. The cryomilling is used as an effective means of rapid fracturing. The detailed scanning electron microscopy and transmission electron microscopy observations indicate that the minimum crystallite size is 6 ± 2 nm after 3 hours of cryomilling. The crystallite size increases to 30 ± 2 nm after 3 hours of room temperature milling of the cryomilled powder due to deformation-induced sintering. Detailed theoretical analysis allows us to obtain a diagram of size of the nanoparticles formed vs temperature to explain the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.S. Murty and S. Ranganathan: Int. Mater. Rev., 1998, vol. 43, pp. 101–41.

    Article  CAS  Google Scholar 

  2. C.C. Koch: Mater. Sci. Eng. A, 1998, vol. 244, pp. 39–48.

    Article  Google Scholar 

  3. S.K. Pabi, D. Das, T.K. Mahapatra, and I. Manna: Acta Mater., 1998, vol. 46, pp. 3501–10.

    Article  CAS  Google Scholar 

  4. D. Das, P.P. Chatterjee, I. Manna, and S.K. Pabi: Scripta Mater., 1999, vol. 41, pp. 861–66.

    Article  CAS  Google Scholar 

  5. D.B. Witkin and E.J. Lavernia: Prog. Mater. Sci., 2006, vol. 51, pp. 1–60.

    Article  CAS  Google Scholar 

  6. F.A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–19.

    Article  CAS  Google Scholar 

  7. C.C. Koch: Nanostruct. Mater., 1993, vol. 2, pp. 109–29.

    Article  CAS  Google Scholar 

  8. A. Verma, K. Biswas, C.S. Tiwary, A. Mondal, and K. Chattopadhyay: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1127–37.

    Article  Google Scholar 

  9. C.S. Tiwary, A. Verma, K. Biswas, A. Mondal, and K. Chattopadhyay: Ceram. Int., 2011, vol. 37, pp. 3677–86.

    Article  CAS  Google Scholar 

  10. K. Barai, C.S. Tiwary, P.P. Chattopadhyay, and K. Chattopadhyay: Mater. Sci. Eng. A, 2012, vol. 558, pp. 52–58.

    Article  CAS  Google Scholar 

  11. X. Zhang, H. Wang, J. Narayan, and C.C. Koch: Acta Mater., 2001, vol. 49, pp. 1319–26.

    Article  CAS  Google Scholar 

  12. X. Zhang, H. Wang, M. Kassem, J. Narayan, and C.C. Koch: Scripta Mater., 2002, vol. 46, pp. 661–65.

    Article  CAS  Google Scholar 

  13. I. Manna, P.P. Chattopadhyay, F. Banhart, and H.-J. Fecht: Appl. Phys. Lett., 2002, vol. 81, pp. 4136–38.

    Article  CAS  Google Scholar 

  14. I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart, and H.-J. Fecht: J. Appl. Phys., 2003, vol. 93, pp. 1520–22.

    Article  CAS  Google Scholar 

  15. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  16. M. Dao, L. Lu, Y.F. Shen, and S. Suresh: Acta Mater., 2006, vol. 54, pp. 5421–32.

    Article  CAS  Google Scholar 

  17. H.J. Fecht: Nanostruct. Mater., 1995, vol. 6, pp. 33–42.

    Article  CAS  Google Scholar 

  18. B. Han, J. Ye, F. Tang, J. Shoenung, and E.J. Lavernia: J. Mater. Sci., 2007, vol. 42, pp. 1660–72.

    Article  CAS  Google Scholar 

  19. F. Sun, P. Rojas, A. Zúñiga, and E.J. Lavernia: Mater. Sci. Eng. A, 2006, vol. 430, pp. 90–97.

    Article  Google Scholar 

  20. M.I. Alymov, E.I. Maltina, and Y.N. Stepanov: Nanostruct. Mater., 1994, vol. 4, pp. 737–42.

    Article  CAS  Google Scholar 

  21. G. Guisbiers and S. Pereira: Nanotechnology, 2007, vol. 18, pp. 435710-1–435710-7.

    Article  Google Scholar 

  22. C. Flake and C. Campbell: Elements of Metallurgy and Engineering Alloys, ASM International, Materials Park, OH, 2008.

  23. J.C. Billelo, D. Dew-Hughes, and A.T. Pucino: J. Appl. Phys., 1983, vol. 54, pp. 821–26.

    Article  Google Scholar 

  24. N. Hashimoto, H. Yoden, and S. Deki: J. Am. Ceram. Soc., 1993, vol. 76, pp. 438–42.

    Article  CAS  Google Scholar 

  25. R.B. Schwarz and C.C. Koch: Appl. Phys. Lett., 1986, vol. 49, pp. 146–48.

    Article  CAS  Google Scholar 

  26. Smithells Metal Reference Handbook, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworth-Heinemann, Burlington, MA, 1992.

Download references

Acknowledgments

The authors thank the Convener of Institute Nanoscience Initiative, Indian Institute of Science, Bangalore, for allowing use of the microscopy facility for characterization for this article’s work. The authors also thank the Nanoscience and Technology Initiatives (NSTI), Department of Science and Technology, Government of India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishanu Biswas.

Additional information

Manuscript submitted May 25, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwary, C.S., Verma, A., Kashyp, S. et al. Preparation of Freestanding Zn Nanocrystallites by Combined Milling at Cryogenic and Room Temperatures. Metall Mater Trans A 44, 1917–1924 (2013). https://doi.org/10.1007/s11661-012-1508-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1508-7

Keywords

Navigation