Skip to main content

Advertisement

Log in

Correlation of Microstructure with Mechanical Properties of Zr-Based Amorphous Matrix Composite Reinforced with Tungsten Continuous Fibers and Ductile Dendrites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A Zr-based amorphous matrix composite reinforced with tungsten continuous fibers in an amorphous LM2 alloy matrix containing ductile β dendrites was fabricated without pores or defects by the liquid pressing process, and its tensile and compressive properties were examined in relation with microstructures and deformation mechanisms. Overall, 68 vol pct of tungsten fibers were distributed in the matrix, in which 35 vol pct of β dendrites were present. The LM2 composite had the greatly improved tensile strength and elastic modulus over the LM2 alloy, and it showed a stable crack propagation behavior as cracks stopped propagating at the longitudinal cracks of tungsten fibers or ductile β dendrites. According to the compressive test results, fracture did not take place at one time after the yield point, but it proceeded as the applied loads were sustained by fibers, thereby leading to the maximum strength of 2432 MPa and plastic strain of 16.4 pct. The LM2 composite had the higher strength, elastic modulus, and ductility under both tensile and compressive loading conditions than the tungsten-fiber-reinforced composite whose matrix did not contain β dendrites. These distinctively excellent properties indicated a synergy effect arising from the mixing of amorphous matrix and tungsten fibers, as well as from the excellent bonding of interfaces between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.-Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Phys. Rev. B, 2001, vol. 64, pp. 180201(R)-4.

  2. J.G. Lee, D-G. Lee, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3753–61.

    Article  CAS  Google Scholar 

  3. T.G. Nieh, C. Schuh, J. Wadsworth, and Y. Li: Intermetallics, 2002, vol. 10, pp. 1177–82.

    Article  CAS  Google Scholar 

  4. W.J. Wright, R. Saha, and W.D. Nix: Mater. Trans., 2001, vol. 42, pp. 642–49.

    Article  CAS  Google Scholar 

  5. A. Inoue, W. Zhang, T. Zhang, and K. Kurasaka: Acta Mater., 2001, vol. 49, pp. 2645–52.

    Article  CAS  Google Scholar 

  6. Z.F. Zhang, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 1167–79.

    Article  CAS  Google Scholar 

  7. S. Gonzalez, J. Sort, D.V. Louzquine-Luzgin, J.H. Perepezko, M.D. Baro, and A. Inoue: Intermetallics, 2010, vol. 18, pp. 2377–84.

    Article  CAS  Google Scholar 

  8. R.D. Corner, R.B. Dandliker, and W.L. Johnson: Acta Mater., 1998, vol. 46, pp. 6089–6102.

    Article  Google Scholar 

  9. P. Wadhwa, J. Heinrich, and R. Busch: Scripta Mater., 2006, vol. 56, pp. 73–76.

    Google Scholar 

  10. C. Fan, C. Li, A. Inoue, and V. Haas: Phys. Rev. B, 2000, vol. 61B, pp. R3761–63.

    Article  Google Scholar 

  11. H.T. Jeong, W. Yook, B.J. Kim, W.T. Kim, and D.H. Kim: Metall. Mater. Int., 2010, vol. 16, pp. 517–22.

    Article  CAS  Google Scholar 

  12. H. Choi-Yim, R. Busch, U. Koster, and W.L. Johnson: Acta Mater., 1999, vol. 47, pp. 2455–62.

    Article  CAS  Google Scholar 

  13. M. Tavoosi, M.H. Enayati, and F. Karimzadeh: Metall. Mater. Int., 2011, vol. 17, pp. 853–56.

    Article  CAS  Google Scholar 

  14. Y.K. Xu, H. Ma, J. Xu, and E. Ma: Acta Mater., 2005, vol. 53, pp. 1857–66.

    Article  CAS  Google Scholar 

  15. M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet, and D.H. Kim: Intermetallics, 2004, vol. 12, pp. 1133–37.

    Article  CAS  Google Scholar 

  16. K.-Y. Kim, H.-S. Joo, B.-H. Kang, and W. Gao: Metall. Mater. Int., 2011, vol. 17, pp. 857–63.

    Article  CAS  Google Scholar 

  17. H.-S. Chin, J.-Y. Suh, K.-W. Park, W. Lee, and E. Fleury: Metall. Mater. Int., 2011, vol. 17, pp. 541–45.

    Article  CAS  Google Scholar 

  18. F. Szuecs, C.P. Kim, and W.L. Johnson: Acta Mater., 2001, vol. 49, pp.1507–13.

    Article  CAS  Google Scholar 

  19. C.C. Hays, C.P. Kim, and W.L. Johnson: Mater. Sci. Eng. A, 2001, vol. 304, pp. 650–55.

    Article  Google Scholar 

  20. Y.H. Jang, S.S. Kim, S.K. Lee, D.H. Kim, and M.K. Um: Compos. Sci. Technol., 2005, vol. 65, pp. 781–84.

    CAS  Google Scholar 

  21. S.B. Lee, K. Matsunaga, Y. Ikuhara, and S.K. Lee: Mater. Sci. Eng. A, 2007, vols. A449–51, pp. 778–81.

  22. K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1319–26.

    Article  CAS  Google Scholar 

  23. K.Q. Qui, A.M. Wang, H.F. Zhang, B.Z. Ding, and Z.Q. Hu: Intermetallics, 2002, vol. 10, pp. 1283–88.

    Article  Google Scholar 

  24. B. Clausen, S.Y. Lee, E. Ustundag, C.C. Aydiner, R.D. Conner, and M.A.M. Bourke: Scripta Mater., 2003, vol. 49, pp. 123–28.

    Article  CAS  Google Scholar 

  25. I.N. Jujur and S. Hanada: Mater. Sci. Eng. A, 1995, vol. 192, pp. 848–55.

    Article  Google Scholar 

  26. M. Nishida, T. Hanabusa, Y. Ikeuchi, and N. Minakawa: Materialwiss. Werkst., 2003, vol. 34, pp. 49–55.

    Article  CAS  Google Scholar 

  27. C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2001, vol. 84, pp. 2901–04.

    Article  Google Scholar 

  28. Y.L. Huang, A. Bracchi, T. Niermann, M. Seibt, D. Danilov, B. Nestler, and S. Schneider: Scripta Mater., 2005, vol. 53, pp. 93–97.

    Article  CAS  Google Scholar 

  29. J.W. Qiao, Y. Zhang, and G.L. Chen: Mater. Des., 2009, vol. 30, pp. 3966–71.

    Article  CAS  Google Scholar 

  30. J.L. Walter and C.L. Briant: J. Mater. Res., 1990, vol. 5, pp. 2004–22.

    Article  CAS  Google Scholar 

  31. V.R. Mastelaro and E.D. Zanotto: J. Non-Cryst. Solids, 1999, vol. 247, pp. 79–86.

    Article  CAS  Google Scholar 

  32. R.S. Kottada and A.H. Chokshi: Acta Mater., 2000, vol. 48, pp. 3905–15.

    Article  CAS  Google Scholar 

  33. D. Dragoi, E. Üstündag, B. Clausen, and M.A.M. Bourke: Scripta Mater., 2001, vol. 45, pp. 245–52.

    Article  CAS  Google Scholar 

  34. C.R. Krenn, D. Roundy, J.W. Morris, and M.L. Cohen: Mater. Sci. Eng. A, 2001, vols. A319–21, pp. 111–14.

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Ministry of Education, Science, and Technology (No. 2010-0026981). The authors are grateful to Drs. Young Buem Song of Agency for Defense Development and Choongnyun Paul Kim of POSTECH for their helpful discussion on the fabrication of the composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted September 26, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, CY., Kim, G.S., Lee, SB. et al. Correlation of Microstructure with Mechanical Properties of Zr-Based Amorphous Matrix Composite Reinforced with Tungsten Continuous Fibers and Ductile Dendrites. Metall Mater Trans A 43, 4088–4096 (2012). https://doi.org/10.1007/s11661-012-1250-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1250-1

Keywords

Navigation