Skip to main content
Log in

Microstructural Evolution and Mechanical Properties of Fusion Welds in an Iron-Copper-Based Multicomponent Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

NUCu-140 is a copper-precipitation-strengthened steel that exhibits excellent mechanical properties with a relatively simple chemical composition and processing schedule. As a result, NUCu-140 is a candidate material for use in many naval and structural applications. Before NUCu-140 can be implemented as a replacement for currently used materials, the weldability of this material must be determined under a wide range of welding conditions. This research represents an initial step toward understanding the microstructural and mechanical property evolution that occurs during fusion welding of NUCu-140. Microhardness traverses and tensile testing using digital image correlation show local softening in the heat-affected zone (HAZ). Microstructural characterization using light optical microscopy (LOM) revealed very few differences in the softened regions compared with the base metal. Local-electrode atom-probe (LEAP) tomography demonstrates that local softening occurs as a result of dissolution of the Cu-rich precipitates. MatCalc kinetic simulations (Vienna, Austria) were combined with welding heat-flow calculations to model the precipitate evolution within the HAZ. Reasonably good agreement was obtained between the measured and calculated precipitate radii, number density, and volume fraction of the Cu-rich precipitates in the weld. These results were used with a precipitate-strengthening model to understand strength variations within the HAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D. Isheim and D.N. Seidman: Surf. Interface Anal., 2004, vol. 36, pp. 569–74.

    Article  CAS  Google Scholar 

  2. D. Isheim, M.S. Gagliano, M.E. Fine, and D.N. Seidman: Acta Mater., 2006, vol. 54, pp. 841–49.

    Article  CAS  Google Scholar 

  3. R.P. Kolli and D.N. Seidman: Microsc. Microanal., 2007, vol. 13, pp. 272–84.

    Article  CAS  Google Scholar 

  4. M.S. Gagliano and M.E. Fine: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2323–29.

    Article  CAS  Google Scholar 

  5. D. Isheim, R.P. Kolli, M.E. Fine, and D.N. Seidman: Scripta Mater., 2006, vol. 55, pp. 35–40.

    Article  CAS  Google Scholar 

  6. R.P. Kolli and D.N. Seidman: Acta Mater., 2008, vol. 56, pp. 2073–88.

    Article  CAS  Google Scholar 

  7. R.P. Kolli, R.M. Wojes, S. Zaucha, and D.N. Seidman: Int. J. Mater. Res., 2008, vol. 99, pp. 513–27.

    Article  CAS  Google Scholar 

  8. R.P. Kolli and D.N. Seidman: Int. J. Mater. Res., 2011, vol. 9, pp. 1115–24.

    Article  Google Scholar 

  9. M.E. Fine, R. Ramanathan, S. Vaynman, and S.P. Bhat: Int. Symp. on Low Carbon Steels for the 90s, 1993, pp. 511–14.

  10. H.R. Castner and C.L. Null: Welding Res., Miami, FL, 1998, pp. 223–31.

  11. S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, and M.E. Fine: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 363–73.

    Article  CAS  Google Scholar 

  12. R.C. Glenn and E. Hornbogen: Trans. TMS-AIME, 1960, vol. 218, pp. 1064–70.

    Google Scholar 

  13. E. Hornbogen: Acta Metall., 1962, vol. 10, pp. 525–33.

    Article  CAS  Google Scholar 

  14. E. Hornbogen: Acta Metall., 1962, vol. 10, pp. 1187–89.

    CAS  Google Scholar 

  15. G.M. Worrall, J.T. Buswell, C.A. English, M.G. Hetherington, and G.D.W. Smith: J. Nucl. Mater., 1987, vol. 148, pp. 107–14.

    Article  CAS  Google Scholar 

  16. G.M. Speich and R.A. Oriani: Trans. TMS-AIME, 1965, vol. 233, pp. 623–31.

    CAS  Google Scholar 

  17. P.J. Othen, M.L. Jenkins, and G.W. Smith: Philos. Mag. A, 1994, vol. 70, pp. 1–24.

    Article  CAS  Google Scholar 

  18. S. Lozano-Perez, M.L. Jenkins, and J.M. Titchmarsh: Philos. Mag. Lett., 2006, vol. 86, pp. 367–74.

    Article  CAS  Google Scholar 

  19. H.R. Habibi-Bajguirani and M.L. Jenkins: Philos. Mag. Lett., 1996, vol. 73, pp. 155–62.

    Article  CAS  Google Scholar 

  20. P.J. Othen, M.L. Jenkins, G.W. Smith, and W.J. Phythian: Philos. Mag. A, 1991, vol. 64, pp. 383–91.

    CAS  Google Scholar 

  21. S.R. Goodman, S.S. Brenner, and J.R. Low: Metall. Trans., 1973, vol. 4, pp. 2363–69.

    Article  CAS  Google Scholar 

  22. S.R. Goodman, S.S. Brenner, and J.R. Low: Metall. Trans., 1973, vol. 4, pp. 2371–78.

    Article  CAS  Google Scholar 

  23. A. Cerezo, C.R.M. Grovenor, M.G. Hetherington, W. Sha, B.A. Shollock, and G.D.W. Smith: Mater. Charact., 1990, vol. 25, pp. 143–56.

    Article  CAS  Google Scholar 

  24. S.K. Lahiri, D. Chandra, L.H. Schwartz, and M.E. Fine: Trans. TMS-AIME, 1969, vol. 245, pp. 1865–68.

    CAS  Google Scholar 

  25. M.A. Sokolov, S. Spooner, G.R. Odette, B.D. Wirth, and G.E. Lucas: 18th International Symposium in Effects of Radiation on Materials, M. Hamilton, ed., West Conshohocken, PA, 1999, pp. 333–45.

  26. J.T. Buswell, E.A. Little, and R.N. Sinclair: Nucl. Energ., 1998, vol. 37, pp. 387–97.

    CAS  Google Scholar 

  27. F. Maury, N. Lorenzelli, and C.H. Denovion: J. Nucl. Mater., 1991, vol. 37, pp. 217–20.

    Article  Google Scholar 

  28. K. Osamura, H. Okuda, K. Asano, M. Furusaka, K. Kishida, and F. Kurosawa: J. de Phys. IV, 1993, vol. 3 (C8), pp. 317–20.

  29. K. Osamura, H. Okuda, M. Takashima, K. Asano, and M. Furusaka: Mater. Trans., 1993, vol. 34, pp. 305–11.

    CAS  Google Scholar 

  30. K. Osamura, H. Okuda, S. Ochiai, M. Takashima, K. Asano, M. Furusaka, K. Kishida, and F. Kurosawa: ISIJ Int., 1994, vol. 34, pp. 359–65.

    Article  CAS  Google Scholar 

  31. F. Maury, N. Lorenzelli, C.H. Denovion, and P. Lagarde: Scripta Metall. Mater., 1991, vol. 25, pp. 1839–44.

    Article  CAS  Google Scholar 

  32. S. Pizzini, K.J. Roberts, W.J. Phythian, C.A. English, and G.N. Greaves: Philos. Mag. Lett., 1990, vol. 61, pp. 223–29.

    Article  CAS  Google Scholar 

  33. W.J. Phythian, A.J.E. Foreman, C.A. English, J.T. Buswell, M.G. Hetherington, K.J. Roberts, and S. Pizzini: 15th International Symposium in Effects of Radiation Materials, 1992, pp. 131–50.

  34. A.B. Edwards, K.J. Roberts, S. Pizzini, and W.J. Phythian: Philos. Mag. A, 1999, vol. 79, pp. 1295–1319.

    Article  CAS  Google Scholar 

  35. P. Asoka-Kumar, B.D. Wirth, P.A. Sterne, R.H. Howell, and G.R. Odette: Philos. Mag. Lett., 2002, vol. 82, pp. 609–15.

    Article  CAS  Google Scholar 

  36. K. Verheyen, M. Jardin, and A. Almazouzi: J. Nucl. Mater., 2006, vol. 351, pp. 209–15.

    Article  CAS  Google Scholar 

  37. J.J. Blackstock and G.J. Ackland: Philos. Mag. A, 2001, vol. 81, pp. 2127–48.

    Article  CAS  Google Scholar 

  38. T. Harry and D.J. Bacon: Acta Mater., 2002, vol. 50, pp. 195–208.

    Article  CAS  Google Scholar 

  39. T. Harry and D.J. Bacon: Acta Mater., 2002, vol. 50, pp. 209–22.

    Article  CAS  Google Scholar 

  40. J.Z. Liu, A.V.D. Walle, G. Ghosh, and M.D. Asta: Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, pp. 1–16.

  41. X. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, and D.N. Seidman: Acta Mater., 2010, vol. 58, pp. 5596–5609.

    Article  CAS  Google Scholar 

  42. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructure and Properties, Elsevier, Atlanta, GA, 2006, pp. 287–306.

  43. O.C. Hellman and D.N. Seidman: Mater. Sci. Eng. A, 2002, vol. 327, pp. 24–28.

    Article  Google Scholar 

  44. O.C. Hellman, J.A. Vandenbroucke, J. Rusing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.

    CAS  Google Scholar 

  45. S.S. Babu: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 267–78.

    Article  CAS  Google Scholar 

  46. S.S. Babu and H. Bhadeshia: Mater. Sci. Eng. A, 1992, vol. A156, pp. 1–9.

    CAS  Google Scholar 

  47. S.S. Babu and H. Bhadeshia: Mater. Sci. Technol., 1990, vol. 6, pp. 1005–20.

    Article  CAS  Google Scholar 

  48. S.S. Babu and S.A. David: ISIJ Int., 2002, vol. 42, pp. 1344–53.

    Article  CAS  Google Scholar 

  49. Sandia National Laboratories: Adv. Mater. Process., 2004, vol. 162, pp. 18–19.

  50. P.W. Fuerschbach and G R. Eisler: 6th Int. Trends in Welding Res. Conf. Proc., Phoenix, AZ, 2002, pp. 15–19.

  51. J.N. Dupont and A.R. Marder: Weld. J., 1995, vol. 74, pp. 406–16.

    Google Scholar 

  52. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructure and Properties, Elsevier, Atlanta, GA, 2006, pp. 155–65.

  53. I. Holzer and E. Kozeschnik: Mater. Sci. Forum, 2010, vols. 638–642, pp. 2579–84.

    Article  Google Scholar 

  54. E. Kozeschnik, J. Svoboda, P. Fratzl, and F.D. Fischer: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2004, vol. 385, pp. 157–65.

  55. E. Kozeschnik: Scripta Mater., 2008, vol. 59, pp. 1018–21.

    Article  CAS  Google Scholar 

  56. J. Svoboda, F.D. Fischer, P. Fratzl, and E. Kozeschnik: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2004, vol. 385, pp. 166–74.

  57. M. Perez, F. Perrard, V. Massardier, X. Klaber, A. Deschamps, H. DeMonestrol, P. Pareige, and G. Covarel: Philos. Mag., 2005, vol. 85, pp. 2197–2210.

    Article  CAS  Google Scholar 

  58. M.D. Mulholland and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 1881–97.

    Article  CAS  Google Scholar 

  59. M.D. Mulholland and D.N. Seidman: Microsc. Microanal., 2011, vol. 17, no. 6, pp. 950–62.

    Article  CAS  Google Scholar 

  60. M.E. Fine, J.Z. Liu, and M.D. Asta: Mater. Sci. Eng. A, 2007, vol. 463, pp. 271–74.

    Article  Google Scholar 

  61. K.C. Russell and L.M. Brown: Acta Metall., 1972, vol. 20, pp. 969–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support of this research by the Office of Naval Research through grants N00014-07-1-0331 and N00014-09-1-0361, as well as useful discussions with the Program Manager, Dr. William Mullins, of the Office of Naval Research. LEAP measurements were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The LEAP tomography system was purchased and upgraded with funding from NSF-MRI grant DMR-0420532 and ONR-DURIP grants N00014-0400798, N00014-0610539, and N00014-0910781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Dupont.

Additional information

Manuscript submitted August 9, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farren, J.D., Hunter, A.H., Dupont, J.N. et al. Microstructural Evolution and Mechanical Properties of Fusion Welds in an Iron-Copper-Based Multicomponent Steel. Metall Mater Trans A 43, 4155–4170 (2012). https://doi.org/10.1007/s11661-012-1249-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1249-7

Keywords

Navigation