Skip to main content
Log in

Impact Response and Microstructural Evolution of 316L Stainless Steel under Ambient and Elevated Temperature Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The impact response and microstructural evolution of 316L stainless steel are examined at strain rates ranging from 1 × 103 to 5 × 103 s−1 and temperatures between 298 K and 1073 K (25 °C and 800 °C) using a split Hopkinson pressure bar and transmission electron microscopy (TEM). The results show that the flow behavior, mechanical strength, and work-hardening properties of 316L stainless steel are significantly dependent on the strain rate and temperature. The TEM observations reveal that the dislocation density increases with increasing strain rate but decreases with increasing temperature. Moreover, twinning occurs only in the specimens deformed at 298 K (25 °C), which suggests that the threshold stress for twinning is higher than that for slip under impact loading. Finally, it is found that the volume fraction of transformed α′ martensite increases with increasing strain rate or decreasing temperature. Overall, the results suggest that the increased flow stress observed in 316L stainless steel under higher strain rates and lower temperatures is determined by the combined effects of dislocation multiplication, twin nucleation and growth, and martensite transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.A. Luna, J.G. Parr, and A. Hanson: Stainless Steel, ASM, Materials Park, OH, 1986, pp. 60–70.

    Google Scholar 

  2. S.G. Hong and S.B. Lee: Int. J. Fatigue, 2004, vol. 26, pp. 899–910.

    Article  CAS  Google Scholar 

  3. M.C. Mataya, E.R. Nilsson, E.L. Brown, and G. Krauss: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1683–1703.

    Article  CAS  Google Scholar 

  4. M.F. Abbod, C.M. Sellars, A. Tanaka, D.A. Linkens, and M. Mahfouf: Mater. Sci. Eng. A, 2009, vol. A491, pp. 290–96.

    Google Scholar 

  5. E. Otero, A. Pardo, M.V. Utrilla, E. Saenz, and J.F. Alvarez: Corros. Sci., 1988, vol. 40, pp. 1421–34.

    Article  Google Scholar 

  6. W.S. Lee and T.J. Liu: J. Nucl. Mater., 2006, vol. 359, pp. 247–57.

    Article  CAS  Google Scholar 

  7. R. Liang and A.S. Khan: Int. J. Plastic., 1999, vol. 15, pp. 963–80.

    Article  CAS  Google Scholar 

  8. W.S. Lee, C.F. Lin, T.H. Chen, and H.H. Huang: J. Mech. Behav. Biomed., 2008, vol. 1, pp. 336–44.

    Article  Google Scholar 

  9. G. Regazzoni, U.F. Kocks, and P.S. Follansbee: Acta Metall., 1987, vol. 35, pp. 2865–75.

    Article  CAS  Google Scholar 

  10. W.S. Lee, C.F. Lin, T.H. Chen, and M.C. Yang: Mater. Sci. Eng. A, 2010, A527, pp. 3127–37.

  11. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  12. W.S. Lee and C.F. Lin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2801–10.

    Article  CAS  Google Scholar 

  13. X. Feaugas: Acta Mater., 1999, vol. 37, pp. 3617–32.

    Article  Google Scholar 

  14. K. Yasunaga, M. Iseki, and M. Kiritanii: Mater. Sci. Eng. A, 2003, vol. A350, pp. 76–80.

    CAS  Google Scholar 

  15. H. Jarmakani, J.M. McNaney, B. Kad, D. Orlikowshi, J.H. Nguyen, and M.A. Meyers: Mater. Sci. Eng. A, 2007, vol. A463, pp. 249–62.

    CAS  Google Scholar 

  16. M.E. Kassner: Acta Mater., 2004, vol. 52, pp. 1–9.

    Article  CAS  Google Scholar 

  17. M. Blicharski and S. Gorczyca: Met. Sci., 1978, vol. 12, pp. 303–12.

    Article  CAS  Google Scholar 

  18. F. Greulich and L.E. Murr: Mater. Sci. Eng., 1979, vol. 39, pp. 81–93.

    Article  CAS  Google Scholar 

  19. W.S. Lee and C.F. Lin: Metall. Trans., 2001, vol. 42, pp. 2080–86.

    CAS  Google Scholar 

  20. G.G. Yapici, I. Karaman, and Z.P. Luo: Acta Mater., 2006, vol. 54, pp. 3755–71.

    Article  CAS  Google Scholar 

  21. A.J. W. Johnson, C.W. Bull, K.S. Kumar, and C.L. Briant: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 295–306.

    Article  CAS  Google Scholar 

  22. S.K. Varma, J. Kalyanam, L.E. Murr, and V. Srinivas: J. Mater. Sci. Lett., 1994, vol. 13, pp. 107–11.

    Article  CAS  Google Scholar 

  23. J.Y. Choi and W. Jin: Scripta Mater., 1997, vol. 36, pp. 99–104.

    Article  CAS  Google Scholar 

  24. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, vol. 13A, pp. 619–26.

    Google Scholar 

  25. W.S. Lee, T.H. Chen, C.F. Lin, and W.Z. Luo: Bioinorg. Chem. Appl., 2011, vol. 2011, p. 173782.

    Article  Google Scholar 

  26. W. Osterle: Prakt. Metallogr., 1992, vol. 29, pp. 401–13.

    Google Scholar 

  27. R.K. Ham: Philos. Mag., 1961, vol. 6, pp. 1183–84.

    Article  Google Scholar 

  28. J. Litonski: Bull. Acad. Pol. Sci. Ser. Sci. Technol., 1977, vol. 25, pp. 7–14.

  29. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vols. A387–89, pp. 158–62.

  30. A. Rohatgi, K.S. Vecchio, and G.T. Gray III: Metall. Mater. Trans. A, 2001, vol. 32A, pp.135–45.

  31. M.F. de Campos, S.A. Loureiro, D. Rodrigues, M.C.A. da Silra, and N.B. de Lima: Mater. Sci. Forum, 2008, vols. 591–93, pp. 3–7.

  32. W.S. Lee, T.H. Chen, and S.C. Huang: J. Nucl. Mater., 2010, vol. 402, pp. 1–7.

    Article  CAS  Google Scholar 

  33. W.S. Lee, C.F. Lin, T.H. Chen, and M.C. Yang: Mater. Sci. Eng. A, 2010, vol. A527, pp. 3127–37.

    CAS  Google Scholar 

  34. L.E. Murr: Shock Waves and High-Strain-Rate Phenomena in Metals, M. A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 607–73.

    Book  Google Scholar 

  35. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: Acta Mater., 1998, vol. 46, pp. 1025–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council of the Republic of China under Grant No. NSC99-2221-E-006-020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woei-Shyan Lee.

Additional information

Manuscript submitted June 18, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WS., Chen, TH., Lin, CF. et al. Impact Response and Microstructural Evolution of 316L Stainless Steel under Ambient and Elevated Temperature Conditions. Metall Mater Trans A 43, 3998–4005 (2012). https://doi.org/10.1007/s11661-012-1233-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1233-2

Keywords

Navigation