Skip to main content
Log in

A Microstructure-Based Constitutive Model for Superplastic Forming

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A constitutive model is proposed for simulations of hot metal forming processes. This model is constructed based on dominant mechanisms that take part in hot forming and includes intergranular deformation, grain boundary sliding, and grain boundary diffusion. A Taylor type polycrystalline model is used to predict intergranular deformation. Previous works on grain boundary sliding and grain boundary diffusion are extended to drive three-dimensional macro stress–strain rate relationships for each mechanism. In these relationships, the effect of grain size is also taken into account. The proposed model is first used to simulate step strain-rate tests and the results are compared with experimental data. It is shown that the model can be used to predict flow stresses for various grain sizes and strain rates. The yield locus is then predicted for multiaxial stress states, and it is observed that it is very close to the von Mises yield criterion. It is also shown that the proposed model can be directly used to simulate hot forming processes. Bulge forming process and gas pressure tray forming are simulated, and the results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. A.J. Barnes: J. Mater. Eng. Perform., 2007, vol. 16, pp. 440–54.

    Article  CAS  Google Scholar 

  2. H.L. Xing, C.W. Wang, K.F. Zhang, and Z.R. Wang: J. Mater. Process. Tech., 2004, vol. 151, pp. 196–202.

    Article  Google Scholar 

  3. J. Bonet, A. Gil, R.D. Wood, R. Said, and R.V. Curtis: Comput. Meth. Appl. Mech. Eng., 2006, vol. 195, pp. 6580–6603.

    Article  Google Scholar 

  4. M.T. Eric, L. Hector, R. Verma, P. Krajewski, and J.-K. Chang: J. Mater. Eng. Perform., 2010, vol. 19, pp. 488–94.

    Article  Google Scholar 

  5. O.D. Sherby and J. Wadsworth: Progr. Mater. Sci., 1989, vol. 33, pp. 169–221.

    Article  CAS  Google Scholar 

  6. M.A. Khaleel, K.I. Johnson, C.H. Hamilton, and M.T. Smith: Int. J. Plast., 1998, vol. 14, pp. 1133–54.

    Article  CAS  Google Scholar 

  7. M.K. Khraisheh, F.K. Abu-Farha, M.A. Nazzal, and K.J. Weinmann: CIRP Annals—Manufact. Technol., 2006, vol. 55, pp. 233–36.

    Article  Google Scholar 

  8. S.G. Luckey Jr., P.A. Friedman, and K.J. Weinmann: J. Mater. Process. Tech., 2007, vol. 194, pp. 30–37.

    Article  CAS  Google Scholar 

  9. M.A. Nazzal, M.K. Khraisheh, and F.K. Abu-Farha: J. Mater. Process. Tech., 2007, vol. 191, pp. 189–92.

    Article  CAS  Google Scholar 

  10. H. Raman, G. Luckey, G. Kridli, and P. Friedman: J. Mater. Eng. Perform., 2007, vol. 16, pp. 284–92.

    Article  CAS  Google Scholar 

  11. R. Verma, L. Hector, P. Krajewski, and E. Taleff: JOM, 2009, vol. 61, pp. 29–37.

    Article  CAS  Google Scholar 

  12. G.Y. Li, M.J. Tan, and K.M. Liew: J. Mater. Process. Tech., 2004, vol. 150, pp. 76–83.

    Article  Google Scholar 

  13. G. Giuliano: Mater. Des., 2008, vol. 29, pp. 1330–33.

    Article  CAS  Google Scholar 

  14. N. Chandra: Int. J. Non-Lin. Mech., 2002, vol. 37, pp. 461–84.

    Article  Google Scholar 

  15. S. Agarwal, C. Briant, P. Krajewski, A. Bower, and E. Taleff: J. Mater. Eng. Perform., 2007, vol. 16, pp. 170–78.

    Article  CAS  Google Scholar 

  16. A.F. Bower and E. Wininger: J. Mech. Phys. Solids, 2004, vol. 52, pp. 1289–1317.

    Article  Google Scholar 

  17. D.E. Cipoletti, A.F. Bower, Y. Qi, and P.E. Krajewski: Mater. Sci. Eng. A, 2009, vol. 504, pp. 175–82.

    Article  Google Scholar 

  18. N. Du, A.F. Bower, P.E. Krajewski, and E.M. Taleff: Mater. Sci. Eng. A, 2008, vol. 494, pp. 86–91.

    Article  Google Scholar 

  19. P.E. Krajewski, L.G. Hector Jr., N. Du, and A.F. Bower: Acta Mater., 2010, vol. 58, pp. 1074–86.

    Article  CAS  Google Scholar 

  20. J.H. Kim, S.L. Semiatin, and C.S. Lee: Acta Mater., 2003, vol. 51, pp. 5613–26.

    Article  CAS  Google Scholar 

  21. T.G. Langdon: Acta Metall. Mater., 1994, vol. 42, pp. 2437–43.

    Article  CAS  Google Scholar 

  22. F.C. Liu and Z.Y. Ma: Scripta Mater., 2010, vol. 62, pp. 125–28.

    Article  CAS  Google Scholar 

  23. S.S. Park, H. Garmestani, G.T. Bae, N.J. Kim, P.E. Krajewski, S. Kim, and E.W. Lee: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 687–92.

    Google Scholar 

  24. M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. Mcnelley: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1249–61.

    Article  CAS  Google Scholar 

  25. W. Green, M.-A. Kulas, A. Niazi, E. Taleff, K. Oishi, P. Krajewski, and T. McNelley: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2727–38.

    Article  CAS  Google Scholar 

  26. T.R. McNelley, K. Oh-Ishi, A.P. Zhilyaev, S. Swaminathan, P.E. Krajewski, and E.M. Taleff: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 50–64.

    Article  CAS  Google Scholar 

  27. K. Inal, K.W. Neale, and A. Aboutajeddine: Int. J. Plast., 2005, vol. 21, pp. 1255–66.

    Article  Google Scholar 

  28. K. Inal, P.D. Wu, and K.W. Neale: Int. J. Plast., 2000, vol. 16, pp. 635–48.

    Article  CAS  Google Scholar 

  29. K. Inal, P.D. Wu, and K.W. Neale: Int. J. Solid. Struct., 2002, vol. 39, pp. 3469–86.

    Article  Google Scholar 

  30. K. Inal, P.D. Wu, and K.W. Neale: Int. J. Solid. Struct., 2002, vol. 39, pp. 983–1002.

    Article  Google Scholar 

  31. K. Inal, P.D. Wu, and K.W. Neale: Modell. Simul. Mater. Sci. Eng., 2002, vol. 10, pp. 237–52.

    Article  Google Scholar 

  32. P. Tugcu, K.W. Neale, P.D. Wu, and K. Inal: Int. J. Plast., 2004, vol. 20, pp. 1603–53.

    Article  Google Scholar 

  33. A.C.F. Cocks: Mech. Mater., 1992, vol. 13, pp. 165–74.

    Article  Google Scholar 

  34. J. Pan and A.C.F. Cocks: Comput. Mater. Sci., 1993, vol. 1, pp. 95–109.

    Article  Google Scholar 

  35. F. Dunne and N. Petrinic: Introduction to Computational Plasticity, Oxford University Press Inc., Oxford, U.K., 2006.

    Google Scholar 

  36. D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1982, vol. 30, pp. 1087–1119.

    Article  CAS  Google Scholar 

  37. D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1983, vol. 31, pp. 1951–76.

    Article  CAS  Google Scholar 

  38. R.J. Asaro: J. Appl. Mech., 1983, vol. 50, pp. 921–34.

    Article  Google Scholar 

  39. R.J. Asaro, W.H. John, and Y.W. Theodore: Advances in Applied Mechanics, vol. 23, Elsevier, Atlanta, GA, 1983, pp. 1–115.

  40. Y. Huang: A User Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program, Harvard University, Cambridge, MA, 1992.

    Google Scholar 

  41. T. Iwakuma and S. Nemat-Nasser: Proc. Royal Soc. London, 1984, vol. 394, no. 1806, pp. 87–119.

  42. A. Molinari, G.R. Canova, and S. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983–94.

    Article  CAS  Google Scholar 

  43. G.Z. Sachs and D. Verein: Der Verein dutsher Ingenieur, 1928, vol. 72, p. 734.

    Google Scholar 

  44. G.I. Taylor: JIM, 1938, vol. 62, pp. 307–24.

    Google Scholar 

  45. Z.R. Wang, Y.W. Xu, and D.J. Guo: Proceedings of the First National Meeting on Plastic Mechanics in Chinese, 1986.

  46. M.T. Eric, G.H. Louis, R.B. John, V. Ravi, and E.K. Paul: Acta Mater., 2009, vol. 57, pp. 2812–22.

    Article  Google Scholar 

  47. Y. Luo, S.G. Luckey, P.A. Friedman, and Y. Peng: Int. J. Mach Tools Manufact., 2008, vol. 48, pp. 1509–18.

    Article  Google Scholar 

Download references

Acknowledgments

The DB work was supported by the Romanian National University Research Council (CNCSIS), Program PCCE, Grant No. 6/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorel Banabic.

Additional information

Manuscript submitted July 30, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari Nedoushan, R., Farzin, M., Mashayekhi, M. et al. A Microstructure-Based Constitutive Model for Superplastic Forming. Metall Mater Trans A 43, 4266–4280 (2012). https://doi.org/10.1007/s11661-012-1215-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1215-4

Keywords

Navigation