Skip to main content

Advertisement

Log in

Microstructural Parameters Controlling High-Temperature Creep Life of the Nickel-Base Single-Crystal Superalloy MC2

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of both topologically close-packed (TCP) phase precipitation and pores on the creep life of a single-crystal superalloy has been studied at 1323 K (1050 °C)/160 MPa. Despite very reproducible primary and secondary creep stages, the creep life is scattered for this specific condition where a very steep tertiary creep stage is observed, corresponding to a highly localized failure process. Image processing was performed after failure to determine the stereological parameters characterizing pores and TCP-phase particles. It was determined that pores are major determinants of creep life under these temperature and stress conditions. It was also observed that the average surface area or the density of pores is not sufficient to explain creep life variability. A homogenization method including modified γ/γ′ microstructure area surrounding pores and TCP-phase particles was developed and correlated to creep life. It is shown that the greater the extent of the modified microstructure, the lower the creep life. Moreover, a better understanding of the TCP-phase role in controlling the creep life was obtained: TCP-phase particles modified the local stress field and disturbed the local γ/γ′ microstructure. They enhance the generation of vacancies and subsequent nucleation and growth of pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Caron and T. Khan: Mater. Sci. Eng., 1983, vol. 61, pp. 173–84.

    Article  CAS  Google Scholar 

  2. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, U.K., 2006.

    Book  Google Scholar 

  3. A.C. Yeh and S. Tin: Scripta Mater., 2005, vol. 52, pp. 519–26.

    Article  CAS  Google Scholar 

  4. M.V. Acharya and G.E. Fuchs: Scripta Mater., 2006, vol. 54, pp. 61–64.

    Article  CAS  Google Scholar 

  5. P. Caron: Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, Eds., TMS, Warrendale, PA, 2000, pp. 737–46.

  6. A.I. Epishin, T. Link, H. Kingelhöffer, B. Fedelich, and P. Portella: Mater. High Temp., 2010, vol. 27, pp. 53–59.

    Article  CAS  Google Scholar 

  7. J.J. Moverare, S. Johansson, and R.C. Reed: Acta Mater., 2009, vol. 57, pp. 2266–76.

    Article  CAS  Google Scholar 

  8. N.V. Petrushin, I.L. Svetlov, A.I. Samoylov, and G.I. Morozova: Int. J. Mater. Res., 2010, vol. 5, pp. 594–600.

    Article  Google Scholar 

  9. C.M.F. Rae and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 4113–25.

    Article  CAS  Google Scholar 

  10. C.M.F. Rae, M.S. Hook, and R.C. Reed: Mater. Sci. Eng. A, 2005, vol. 396, pp. 231–39.

    Article  Google Scholar 

  11. G.E. Fuchs: Mater. Sci. Eng. A, 2001, vol. 300, pp. 52–60.

    Article  Google Scholar 

  12. M.S.A. Karunaratne, D.C. Cox, and R.C. Reed: Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, Eds., TMS, Warrendale, PA, 2000, pp. 263–72.

  13. B.C. Wilson, J.A. Hickman, and G.E. Fuchs: J. Mater., 2003, pp. 35–40.

  14. M. Simonetti and P. Caron: Mater. Sci. Eng. A, 1998, vol. 254, pp. 1–12.

    Article  Google Scholar 

  15. M. Pessah, P. Caron, and T. Khan: Superalloys 1992, S.D. Antolovitch, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom, Eds., TMS, Warrendale, PA, 1992, pp. 567–76.

  16. T. Sugui, W. Minggang, L. Tang, Q. Benjiang, and X. Jun: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5444–51.

    Article  Google Scholar 

  17. R.C. Reed, M. Matan, D.C. Cox, M.A. Rist, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367–81.

    Article  CAS  Google Scholar 

  18. L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, and H.T. Zhu: Mater. Sci. Eng. A, 2005, vol. 397, pp. 297–304.

    Article  Google Scholar 

  19. J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, and Z.Q. Hu: Scripta Mater., 2006, vol. 55, pp. 331–34.

    Article  CAS  Google Scholar 

  20. J.J. Moverare, S. Johanssen, and R.C. Reed: Acta Mater., 2009, vol. 57, pp. 2266–76.

    Article  CAS  Google Scholar 

  21. J.-B. le Graverend, J. Cormier, P. Caron, S. Kruch, F. Gallerneau, and J. Mendez: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2620–34.

    Article  Google Scholar 

  22. J. Cormier: Ph.D. Dissertation, Université de Poitiers, France, 2006.

  23. Y.F. Han, W.Y. Ma, Z.Q. Dong, S.S. Li, and S.K. Gong: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, Eds., TMS, Warrendale, PA, 2008, pp. 91–97.

  24. D. Wang, J. Zhang, and L.H. Lou: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5161–66.

    Article  Google Scholar 

  25. A. Volek and R.F. Singer: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schurra, and S. Walston, Eds., TMS, Warrendale, PA, 2004, pp. 713–18.

  26. R.C. Reed, D.C. Cox, and C.M.F. Rae: Mater. Sci. Eng. A, 2007, vol. 448, pp. 88–96.

    Article  Google Scholar 

  27. A. Staroselsky and B. Cassenti: Mech. Time-Depend Mater., 2008, vol. 12, pp. 275–89.

    Article  CAS  Google Scholar 

  28. T. Link, S. Zabler, A. Epishin, A. Haibel, M. Bansal, and X. Thibault: Mater. Sci. Eng. A, 2006, vol. 425, pp. 47–54.

    Article  Google Scholar 

  29. J. Cormier, P. Villechaise, and X. Milhet: Mater. Sci. Eng. A, 2009, vol. 501, pp. 61–69.

    Article  Google Scholar 

  30. L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2004, vol. 385, pp. 105–12.

    Article  Google Scholar 

  31. B. Roebuck, D. Cox, and R. Reed: Scripta Mater., 2001, vol. 44, pp. 917–21.

    Article  CAS  Google Scholar 

  32. M. Feller-Kniepmeier, T. Link, I. Poschmann, G. Scheunemann-Frerker, and C. Schulze: Acta Mater., 1996, vol. 44, pp. 2397–407.

    Article  CAS  Google Scholar 

  33. J. Cormier, X. Mihlet, and J. Mendez: J. Mater. Sci., 2007, vol. 42, pp. 7780–86.

    Article  CAS  Google Scholar 

  34. K. Serin, G. Göbenli, and G. Eggeler: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 133–37.

    Google Scholar 

  35. J. Cormier, M. Jouiad, F. Hamon, P. Villechaise, and X. Milhet: Phil. Mag. Lett., 2010, vol. 90, pp. 611–20.

    Article  CAS  Google Scholar 

  36. C.M.F. Rae, M.S.A. Karunaratne, C.J. Small, R.W. Broomfield, C.N. Jones, and R.C. Reed: Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, Eds., TMS, Warrendale, PA, 2000, pp. 767–76.

  37. M. Pessah-Simonetti: Ph.D. Dissertation, Université Paris-Sud Centre d’Orsay, France, 1994.

  38. J.D. Embury, A. Deschamps, and Y. Brechet: Scripta Mater., 2003, vol. 49, pp. 927–32.

    Article  CAS  Google Scholar 

  39. J.-R. Vaunois, J. Cormier, P. Villechaise, A. Devaux, and B. Flageolet: 7 th Int. Symp. on Superalloy 718 and Derivatives, E.A. Ott, J. Groh, and H. Sizek, Eds., TMS, Pittsburgh, PA, 2010, pp. 199–213.

  40. B.S. Bokstein, A.I. Epishin, T. Link, V.A. Esin, A.O. Rodin, and I.L. Svetlov: Scripta Mater., 2007, vol. 57, pp. 801–04.

    Article  CAS  Google Scholar 

  41. J. Cormier and G. Cailletaud: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6300–12.

    Article  Google Scholar 

  42. D.C. Cox: Ph.D. Dissertation, University of Cambridge, Cambridge, U.K., 2000.

  43. J. Schlipf: Acta Metall., 1973, vol. 21, pp. 435–40.

    Article  CAS  Google Scholar 

  44. J.A. Brinkman: Acta Metall.,1955, vol. 3, pp. 140–45.

    Article  CAS  Google Scholar 

  45. B. Fedelich, G. Künecke, A. Epishin, T. Link, and P. Portella: Mater. Sci. Eng. A, 2009, vols. 510–511, pp. 273–77.

    Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to the Turbomeca–SAFRAN group for providing the material and to the DPAC (Direction des Programmes Aéronautiques et de la Coopération) for its financial support. This work is conducted under a French program involving Snecma-SAFRAN group, Turbomeca-SAFRAN group, ONERA, CNRS Laboratories (Mines Paris Tech, Institut P’-ENSMA, LMT-Cachan, LMS-X, CIRIMAT-ENSIACET), and CEAT. J.-B. le Graverend is also grateful to D. Pacou, V. Bonnand, and R. Degeilh for stimulating discussions. Dr Zéline Hervier (Materials Department at Turbomeca SAFRAN group) is gratefully acknowledged for her encouragements and continuous interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Briac Le Graverend.

Additional information

Manuscript submitted August 26, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Graverend, JB., Cormier, J., Kruch, S. et al. Microstructural Parameters Controlling High-Temperature Creep Life of the Nickel-Base Single-Crystal Superalloy MC2. Metall Mater Trans A 43, 3988–3997 (2012). https://doi.org/10.1007/s11661-012-1207-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1207-4

Keywords

Navigation