Skip to main content
Log in

Microstructural and Phase Evolution of Compound Layers Growing on α–Iron During Gaseous Nitrocarburizing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution of compound layers grown on 1-mm thick α-iron substrates after nitrocarburizing at 853 K (580 °C) in NH3/H2/N2/CO gas mixtures was investigated by light optical microscopy and X-ray diffraction. The evolution of the microstructure can be divided into several stages. Starting with the formation of the carbon-rich phase cementite, which practically does not contain nitrogen, the phase constitution of the compound layer develops through successive stages of microstructural change into the direction of the nitrogen-richer and carbon-poorer phases ε and γ’. These results are the consequences of (1) the kinetics of nitrogen and carbon uptake at the gas–solid interface and the considerably different solubilities of nitrogen and carbon in the α-iron substrate and (2) the occurrence of local equilibrium conditions prevailing at the solid–solid interphase boundaries in the compound layer. The change of the microstructure as a function of depth in the compound layer is shown to be compatible with so-called “diffusion paths” in the ternary Fe-N-C phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The nitrocarburizing atmosphere used for series C leads to the formation of a single-phase cementite layer on 1-mm-thick, rectangular, nonsaturated α-iron substrates.[15,26]

  2. Inhomogeneous means that the phase constitution of the microstructure and, thus, the composition in the compound layer varies as function of the lateral position on the specimen cross section. According to the current observations, the position/height of the specimen in the furnace did not influence the distribution of the different microstructures: The linear gas flow rates in the furnace are high enough so that the effective chemical potentials of N and C are constant along the surface of the specimen during the heat treatment.

  3. A time-invariant phase constitution (microstructure) of the compound layer is expected to occur only for the case of a constant nitrogen and carbon concentration at the surface of the compound layer (implying local equilibrium or stationary state at the gas–solid interface) in combination with (1) a nitrogen and carbon saturated substrate or (2) an infinitely thick substrate with initially constant nitrogen and carbon content. In such cases (and assuming local equilibrium at the solid–solid interfaces in the compound layer), the so-called Boltzmann transformation can be applied to Fick’s second law, implying a time-invariant diffusion path (lateral gross composition as a function of depth) and a parabolic growth of the compound-layer thickness.[4,7,35]

  4. For example, if the recombination and desorption of adsorbed nitrogen atoms from the specimen surface cannot be neglected compared with the rate of NH3 dissociation, a stationary state instead of a local equilibrium occurs, i.e., the chemical potential of nitrogen in the solid at the surface of the specimen is lower than that pertaining to the nitrocarburizing atmosphere.[12,36]

  5. Even in the case of finite but about equal transfer rates of nitrogen and carbon, the solubility limit of carbon will be surpassed first as a consequence of the large difference of the solubility limits of nitrogen and carbon.

  6. “Metastable” because θ, ε, and γ’ are considered not to decompose into graphite, nitrogen gas, and α-Fe as required for “stable” phase equilibria.

  7. The possible conversion of cementite into ε was first reported in Reference 39 after nitriding of pearlitic substrates at 843 K (570 °C).

  8. Moreover, as shown in Figure 7, the formation of a single-phase γ’ layer from a cementite and/or an ε containing compound layer is possible only if the carbon content in the α-iron substrate at the layer/substrate interface is decreased.

  9. The diffusional flux of carbon into the α-iron substrate can be neglected because of the small solubility limit of carbon in ferrite; see Table I.

References

  1. F.J.J. Van Loo, M.R. Rijnders, K.J. Ronka, J.H. Gulpen, and A.A. Kodentsov: Solid State Ionics, 1997, vol. 95, nos. 1–2, pp. 95–106.

    Google Scholar 

  2. P.M. Unterweiser: Source Book on Nitriding, ASM, Materials Park, OH, 1977.

  3. A.A. Kodentsov, G.F. Bastin, and F.J.J. Van Loo: J. Alloys Compd., 2001, vol. 320, pp. 207–17.

    Article  CAS  Google Scholar 

  4. F.J.J. Van Loo: Progr. Solid State Chem., 1990, vol. 20, pp. 47–99.

    Article  Google Scholar 

  5. J.M.G. Vilar and J.M. Rubí: Proc. Natl. Acad. Sci. U S A, 2001, vol. 98, pp. 11081–84.

    Article  CAS  Google Scholar 

  6. Y.H. Sohn and M.A. Dayananda: Acta Mater., 2000, vol. 48, pp. 1427–33.

    Article  CAS  Google Scholar 

  7. J.S. Kirkaldy and D.J. Young: Diffusion in the Condensated State, The Institute of Metals, London, U.K., 1987.

  8. G. Ghosh: J. Electron. Mater., 1998, vol. 27, pp. 1154–60.

    Article  CAS  Google Scholar 

  9. M.A.J. Somers: Heat Treat. Met., 2000, vol. 4, pp. 92–102.

    Google Scholar 

  10. J. Slycke: Nitrieren und Nitrocarburieren, AWT, Darmstadt, Germany, 1996, pp. 19–28.

  11. M.A.J. Somers and E.J. Mittemeijer: Surf. Eng., 1987, vol. 3, pp. 123–37.

    Google Scholar 

  12. E.J. Mittemeijer and M.A.J. Somers: Surf. Eng., 1997, vol. 13, pp. 483–37.

    CAS  Google Scholar 

  13. P.F. Colijn, E.J. Mittemeijer, and H.C.F. Rozendaal: Z. Metallkd., 1983, vol. 74, pp. 620–27.

    CAS  Google Scholar 

  14. J. Slycke and L. Sproge: Surf. Eng., 1989, vol. 5, pp. 125–40.

    CAS  Google Scholar 

  15. T. Gressmann, M. Nikolussi, A. Leineweber, and E.J. Mittemeijer: Scripta Mater., 2006, vol. 55, pp. 723–26.

    Article  CAS  Google Scholar 

  16. H. Du: J. Phase Equil., 1993, vol. 14, pp. 682–93.

    Article  CAS  Google Scholar 

  17. J. Kunze: Nitrogen and Carbon in Iron and Steel, Akademie-Verlag Berlin, Germany, 1990.

  18. T. Bell: Heat Treat. Met., 1975, vol. 2, pp. 39–49.

    CAS  Google Scholar 

  19. C. Dawes and D.F. Tranter: Heat Treat. Met., 1985, vol. 3, pp. 70–76.

    Google Scholar 

  20. T. Bell and D.H. Thomas: Metall. Trans. A, 1979, vol. 10A, pp. 79–84.

    CAS  Google Scholar 

  21. E.J. Mittemeijer: J. Heat Treat., 1983, vol. 3, pp. 114–19.

    Article  Google Scholar 

  22. M.A.J. Somers, P.F. Colijn, W.G. Sloof, and E.J. Mittemeijer: Z. Metallkd., 1990, vol. 81, pp. 33–43.

    CAS  Google Scholar 

  23. H. Du, M.A.J. Somers, and J. Ågren: Metall. Mater. Trans. A 2000, vol. 31A, pp. 195–211, 801.

  24. M. Nikolussi, A. Leineweber, E. Bischoff, and E.J. Mittemeijer: Int. J. Mater. Res., 2007, vol. 98, pp. 1086–92.

    Article  CAS  Google Scholar 

  25. T. Woehrle, A. Leineweber, and E.J. Mittemeijer: HTM J. Heat Treat. Mater., 2010, vol. 65, pp. 243–48.

    CAS  Google Scholar 

  26. M. Nikolussi, A. Leineweber, and E.J. Mittemeijer: J. Mater. Sci. 2009, vol. 44, pp. 770–77.

    Article  CAS  Google Scholar 

  27. E. Lehrer: Z. Elektrochem., 1930, vol. 36, pp. 383–92.

    CAS  Google Scholar 

  28. S.S. Hosmani, R.E. Schacherl, and E.J. Mittemeijer: Acta Mater., 2006, vol. 54, pp. 2783–92.

    Article  CAS  Google Scholar 

  29. H.A. Wriedt, N.A. Gokcen, and R.H. Nafziger: Bull. Alloy. Phase. Diagr., 1987, vol. 8, pp. 355–77.

    Article  CAS  Google Scholar 

  30. A. Wells: J. Mater. Sci., 1985, vol. 20, pp. 2439–45.

    Article  CAS  Google Scholar 

  31. G. Petzow: Metallographic Etching, ASM International, Materials Park, OH, 1999.

  32. M. Nikolussi, A. Leineweber, and E.J. Mittemeijer: Phil. Mag., 2010, vol. 90, pp. 1105–22.

    Article  CAS  Google Scholar 

  33. M.A.J. Somers and E.J. Mittemeijer: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 57–74.

    Article  CAS  Google Scholar 

  34. T. Sone, E. Tsunasawa, and K. Yamanaka: Trans. Japan Inst. Met., 1981, vol. 22, pp. 237–43.

    Google Scholar 

  35. J. Crank: The Mathematics of Diffusion, Oxford Science Publications, Oxford, U.K., 1975.

  36. E.J. Mittemeijer and J.T. Slycke: Heat Treat. Met., 1996, vol. 3, pp. 67–71.

    Google Scholar 

  37. H.J. Grabke: Archiv Eisenhütten., 1975, vol. 46, pp. 75–81.

    CAS  Google Scholar 

  38. M. Weller: Mater. Sci. Forum, 2001, vols. 366–368, p. 95.

  39. E.J. Mittemeijer, W.T.M. Straver, P.F. Colijn, P.J. van der Schaaf, and J.A. van der Hoeven: Scripta Metall., 1980, vol. 14, pp. 1189–92.

    Article  CAS  Google Scholar 

  40. J. Kunze: Härterei-Tech. Mitt., 1996, vol. 51, pp. 348–55.

    CAS  Google Scholar 

  41. J. Slycke, L. Sproge, and J. Ågren: Scand. J. Metall., 1988, vol. 17, pp. 122–26.

    CAS  Google Scholar 

  42. H. Du and J. Ågren: Z. Metallkd., 1995, vol. 86, pp. 522–29.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Dr. Thomas Gressmann for his help with the nitrocarburizing experiments and the scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Leineweber.

Additional information

Manuscript submitted June 7, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woehrle, T., Leineweber, A. & Mittemeijer, E.J. Microstructural and Phase Evolution of Compound Layers Growing on α–Iron During Gaseous Nitrocarburizing. Metall Mater Trans A 43, 2401–2413 (2012). https://doi.org/10.1007/s11661-012-1100-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1100-1

Keywords

Navigation