Skip to main content
Log in

Characterization of Nonmetallic Inclusions in High-Manganese and Aluminum-Alloyed Austenitic Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of Al and Mn contents on the size, composition, and three-dimensional morphologies of inclusions formed in Fe-xMn-yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) steels were investigated to enhance our understanding of the inclusion formation behavior in high Mn-Al–alloyed steels. By assuming that the alumina is a dominant oxide compound, the volume fraction of inclusions estimated from the chemical analysis, i.e., insoluble Al, in the Fe-Mn-3Al steels was larger than the inclusion volume fractions in the Fe-Mn-1Al and Fe-Mn-6Al steels. A similar tendency was found in the analysis of inclusions from a potentiostatic electrolytic extraction method. This finding could be explained from the terminal velocities of the compounds, which was affected by the thermophysical properties of Fe-Mn-Al steels. The inclusions formed in the Fe-Mn-Al–alloyed steels are classified into seven types according to chemistry and morphology: (1) single Al2O3 particle, (2) single AlN or AlON particle, (3) MnAl2O4 single galaxite spinel particle, (4) Al2O3(-Al(O)N) agglomerate, (5) single Mn(S,Se) particle, (6) oxide core with Mn(S,Se) skin (wrap), and (7) Mn(S,Se) core with Al2O3(-Al(O)N) aggregate (or bump). The Mn(S,Se) compounds were formed by the contamination of the steels by Se from the electrolytic Mn. Therefore, the raw materials (Mn) should be used carefully in the melting and casting processes of Fe-Mn-Al–alloyed steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  2. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques: Acta Mater., 2010, vol. 58, pp. 2464–76.

    Article  CAS  Google Scholar 

  3. S.W. Hwang, J.H. Ji, and K.T. Park: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7267–75.

    Article  CAS  Google Scholar 

  4. AHSS Application Guidelines (version 4.1), IISI, http://www.worldautosteel.org, 2009, pp. 1–14.

  5. G. Frommeyer and U. Brüx: Steel Res. Int., 2006, vol. 77, pp. 627–33.

    CAS  Google Scholar 

  6. J.D. Yoo, S.W. Hwang, and K.T. Park: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1520–23.

    Article  CAS  Google Scholar 

  7. Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma, and K. Ishida: ISIJ Int., 2010, vol. 50, pp. 893–99.

    Article  CAS  Google Scholar 

  8. A. Dumay, J.P. Chateau, S. Allain, S. Miget, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 184–87.

  9. K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3651–61.

    Article  Google Scholar 

  10. A.S. Hamada, L.P. Karjalainen, and M.C. Somani: Mater. Sci. Eng. A, 2007, vol. 467, pp. 114–24.

    Article  Google Scholar 

  11. M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami: Mater. Sci. Eng. A, 2008, vol. 497, pp. 353–57.

    Article  Google Scholar 

  12. Y. Kim, N. Kim, Y. Park, I. Choi, G. Kim, S. Kim, and K. Cho: J. Kor. Inst. Metall. Mater., 2008, vol. 46, pp. 780–87.

    CAS  Google Scholar 

  13. J.M. Jang, S.J. Kim, N.H. Kang, K.M. Cho, and D.W. Suh: Metall. Mater. Int., 2009, vol. 15, pp. 909–16.

    Article  CAS  Google Scholar 

  14. K. Ahn, D. Yoo, M.H. Seo, S.H. Park, and K. Chung: Metall. Mater. Int., 2009, vol. 15, pp. 637–47.

    Article  Google Scholar 

  15. K.G. Jin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.H. Kim, and N.J. Kim: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2922–28.

    Article  Google Scholar 

  16. J. Kim, S.J. Lee, and B.C. De Cooman: Scripta Mater., 2011, vol. 65, pp. 363–66.

  17. I.J. Park, S.T. Kim, I.S. Lee, Y.S. Park, and M.B. Moon: Mater. Trans., 2009, vol. 50, pp. 1440–47.

    Article  CAS  Google Scholar 

  18. J. Sojka, V. Vodarek, I. Schindler, C. Ly, M. Jerome, P. Vanova, N. Ruscassier, and A. Wenglorzova: Corros. Sci., 2011, vol. 53, pp. 2575–81.

    Article  CAS  Google Scholar 

  19. M. Amirthalingam, M. Hermans, and I. Richardson: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 901–09.

    Article  CAS  Google Scholar 

  20. S.E. Kang, A. Tuling, J.R. Banerjee, W.D. Gunawardana, and B. Mintz: Mater. Sci. Tech., 2011, vol. 27, pp. 95–100.

    Article  CAS  Google Scholar 

  21. G. Gigacher, W. Krieger, P.R. Scheller, and C. Thomser: Steel Res. Int., 2005, vol. 76, pp. 644–49.

    CAS  Google Scholar 

  22. J.H. Park: Mater. Sci. Eng. A, 2008, vol. 472, pp. 43–51.

    Article  Google Scholar 

  23. J.H. Park, S.B. Lee, D.S. Kim, and J.J. Pak: ISIJ Int., 2009, vol. 49, pp. 337–42.

    Article  CAS  Google Scholar 

  24. J.H. Park, G.H. Park, D.J. Paik, Y. Huh, and M.H. Hong: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 195–207.

    Article  Google Scholar 

  25. A. Karasev and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 259–70.

    Article  CAS  Google Scholar 

  26. H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 14–21.

    Article  CAS  Google Scholar 

  27. J. Lee, L.T. Hoai, and M. Shin: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 546–49.

    Article  Google Scholar 

  28. K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, NPL and ASM International, Woodhead Publishing Limited, Cambridge, UK, 2002.

  29. S. Seetharaman: Fundamentals of Metallurgy, IOM and CRC Press, Woodhead Publishing Limited, Cambridge, UK, 2005.

  30. www.factsage.com, 2011.

  31. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, pp. 295–311.

    Article  CAS  Google Scholar 

  32. J.H. Park and Y.B. Kang: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 791–98.

    Article  CAS  Google Scholar 

  33. J.H. Park, S.B. Lee, and H.R. Gaye: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 853–61.

    Article  CAS  Google Scholar 

  34. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46.

    Article  CAS  Google Scholar 

  35. J.H. Park: CALPHAD, 2011, vol. 35, pp. 455–62.

    Article  CAS  Google Scholar 

  36. I. Lewis, P. Scaife, and D. Swinkels: J. Appl. Electrochem., 1976, vol. 6, pp. 453–63.

    Article  CAS  Google Scholar 

  37. Y. Sun, X. Tian, B.B. He, C. Yang, Z.B. Pi, Y.X. Wang, and S.X. Zhang: Electrochim. Acta, 2011, vol. 56, pp. 8305–10.

    Article  CAS  Google Scholar 

  38. Y.K. Lee: Private communication, Yonsei University, Seoul, Korea, May 2011.

  39. R. Dekkers: Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, 2002.

  40. K.C. Mills: Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, Butterworth, London, UK, 1974.

  41. J.M. Mehta, P.G. Riewald, and L.H. Van Vlack: J. Am. Ceram. Soc., 1967, vol. 50, pp. 164–65.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted September 11, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Kim, DJ. & Min, D.J. Characterization of Nonmetallic Inclusions in High-Manganese and Aluminum-Alloyed Austenitic Steels. Metall Mater Trans A 43, 2316–2324 (2012). https://doi.org/10.1007/s11661-012-1088-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1088-6

Keywords

Navigation